

Selected lessons in radio source counts and a lot more...

Carole Jackson 5 December 2018

JASPER™ WALL

With its rich texture, Jasper wall has a textured appearance resembling that of Canadian Rocky Mountains. Its small size allows for quick and efficient installation and enhances the look of any landscape. Available in 2 colors, Jasper wall fits perfectly with all projects.

Jasper[™] Wall

EARTH BLEND/BEIGE AND BLACK

COLOURS

Earth Shadow blend/Beige and black charcoal

AVAILABLE IN ONTARIO, QUEBEC, AND THE MARITIMES

Confirm the availability of this product in your region

CONFIRM

H2R 1S3

adio Astronomy

Radio source counts as cosmological probes

- a 2019 student thesis aim
- Derive precision sky models for SKA-era galaxy surveys,
- Permit exquisite foreground extraction for EOR detection
- Gain direct insights into AGN lifetimes, growth of large scale structure, etc.
- ... this is a story of old data (circ 1994) & new developments....

1991-1994 BA 1994 – 1997 PhD

Lessons from Jasper

- Radio emission is unattenuated by the ISM or IGM: radio galaxies and quasars allow us to sample the whole observable Universe
- Radio spectra are relatively smooth; radio sources at z=1 in 3CR are so luminous they could be detected at z=10 if they exist
- Modern radio surveys are statistically complete
- There are discrete radio source populations with differing(?) evolution histories
- The imprint of large-scale structure is clearly seen in radio surveys

(advanced?) Radio lessons from Jasper

- The evolution of powerful radio sources mirrors (and probably influences) cosmic star formation history
- Modern radio surveys are statistically complete: mJy-sensitivity surveys sample the whole of the (powerful) radio source population

However

• At low frequencies(<200 MHz) surveys & data are limited by large beams (confusion) and lack of a sizable complete sample to define source evolution

The extragalactic radio frequency sky

The extragalactic radio frequency sky

Radio source counts embody information about the source populations & their evolution (space density) over cosmic time

Radio lessons from Jasper

• The evolution of powerful radio sources mirrors (and probably influences) star Formation history

• Modern radio surveys are statistically complete: mJy level surveys sample the whole of the (powerful) radio source population(s)

However

 At low frequencies(<200 MHz) surveys & data are limited by large beams (confusion) and lack of a sizable complete sample to define source evolution

So

- (1994 1997) use low frequency + deeper high frequency data together, and
- Directly attempt to probe the space density of the highest-z quasars

Determine space density of high-z quasars – trace evolution directly using compact quasars from a radio sample (Parkes 2.7 GHz -> Optical z's)

Determine space density of high-z quasars – trace evolution directly using compact quasars from a radio sample (Parkes 2.7 GHz -> Optical z's)

International journal of science

Letter Published: 05 December 1996

Decrease in the space density of quasars at high redshift

P. A. Shaver, J. V. Wall, K. I. Kellermann, C. A. Jackson & M. R. S. Hawkins

Nature 384, 439–441 (05 December 1996) Download Citation ±

IAU GA 2003 (Sydney): Jasper returns to Parkes...

The Parkes quarter-Jansky flat-spectrum sample

III. Space density and evolution of QSOs

J. V. Wall^{1,*}, C. A. Jackson^{2,**}, P. A. Shaver³, I. M. Hook¹, and K. I. Kellermann⁴

Fig. 10. Above: space density ρ vs redshift. The individual RLFs are each complete from z = 1.0 to z = 5.5 in steps of $\Delta z = 0.5$, in the order purple, brown, orange, dark red, light blue, turquoise, blue, green, red, grey. Below: these RLFs normalized to agree over the range at 1.0 < z < 2.5. The bold black line is a least-squares fit with a polynomial of fifth order, given in the text. The grey lines represent 1000 bootstrap trials. In this process, fits which resulted in lines of positive slope beyond z = 5 were rejected.

2005

The extragalactic radio frequency sky – 151 MHz

The extragalactic radio frequency sky – 5 GHz

The extragalactic radio frequency sky – 5 GHz

- A "dual-population" unified scheme
- Can describe the radio source counts
- Can produce 'testable predictions'
- Predicts population-specific N(z)'s

Wall & Jackson (1997) Jackson & Wall (1999)

2.7 GHz: increasing Quasar fractions

2003 - 2013

Publications of the Astronomical Society of Australia, 2007, 24, 174–188

CSIRO PUBLISHING www.publish.csiro.au/journals/pasa

Science with the Australian Square Kilometre Array Pathfinder

S. Johnston^{A,X}, M. Bailes^B, N. Bartel^C, C. Baugh^D, M. Bietenholz^{C,W}, C. Blake^B, R. Braun^A, J. Brown^E, S. Chatterjee^F, J. Darling^G, A. Deller^B, R. Dodson^H, P. G. Edwards^A, R. Ekers^A, S. Ellingsen^I, I. Feain^A, B. M. Gaensler^F, M. Haverkorn^J, G. Hobbs^A, A. Hopkins^F, C. Jackson^A, C. James^K, G. Joncas^L, V. Kaspi^M, V. Kilborn^B, B. Koribalski^A, R. Kothes^E, T. L. Landecker^N, E. Lenc^B, J. Lovell^I, J.-P. Macquart^O, R. Manchester^A, D. Matthews^P, N. M. McClure-Griffiths^A, R. Norris^A, U.-L. Pen^Q, C. Phillips^A, C. Power^B, R. Protheroe^K, E. Sadler^F, B. Schmidt^R, I. Stairs^S, L. Staveley-Smith^T, J. Stil^E, R. Taylor^E, S. Tingay^U, A. Tzioumis^A, M. Walker^V, J. Wall^S, and M. Wolleben^N

EMU: Evolutionary Map of the Universe

Ray P. Norris¹, A. M. Hopkins^{2,36}, J. Afonso³, S. Brown¹, J. J. Condon⁴, L. Dunne⁵, I. Feain¹, R. Hollow¹, M. Jarvis^{6,38}, M. Johnston-Hollitt⁷, E. Lenc¹, E. Middelberg⁸, P. Padovani⁹, I. Prandoni¹⁰, L. Rudnick¹¹, N. Seymour¹², G. Umana¹³, H. Andernach¹⁴, D. M. Alexander²¹, P. N. Appleton¹⁵, D.Bacon¹⁶, J. Banfield¹, W. Becker¹⁷, M. J. I. Brown¹⁸, P. Ciliegi¹⁹, C. Jackson¹, S. Eales²⁰, A. C. Edge²¹, B.M. Gaensler^{22,36}, G. Giovannini¹⁰, C. A. Hales^{1,22}, P. Hancock^{22,36}, M.Y.Huynh²³, E. Ibar²⁴, R. J. Ivison^{24,25}, R. Kennicutt²⁶, Amy E. Kimbalt⁴, A. M. Koekemoer²⁷, B. S. Koribalski¹, Á. R. López-Sánchez^{2,37}, M. Y. Mao^{1,2,28}, T. Murphy^{22,36}, H. Messias²⁹, K. A. Pimbblet¹⁸, A. Raccanelli¹⁶, K. E. Randall^{1,22}, T. H. Reiprich³⁰, I. G. Roseboom³¹ H. Röttgering³², D.J. Saikia³³, R.G.Sharp³⁴, O.B.Slee¹, Ian Smail²¹, M. A. Thompson⁶, J. S. Urquhart¹, J. V. Wall³⁵, G.-B. Zhao¹⁶

Murchison Widefield Array (MWA)

- World's first **operational SKA precursor** (August 2013)
- Managed & operated by Curtin University
- 128 tiles*2 (Area~2750 m² at 150 MHz) 16 dipoles per tile
- Frequency range 72 MHz 300 MHz (30 MHz BW)
- Maximum baseline 3 km -> 5km
- MWA System description
 - Tingay et al. PASA, 2013

Curtin University

LOFAR 1.0, core @ Exloo AST(RON

The deep 154 MHz radio source sky

Radio source counts @ low radio-frequencies !

Netherlands Institute for Radio Astronc

Radio source counts @ low radio-frequencies

Radio source counts @ low radio-frequencies

LOFAR + deep optical redshift surveys

- LOFAR target sources for 4.2m WHT WEAVE MOS
- Expect > 1 million spectra of radio sources during 5 years of WEAVE observations
- No magnitude or colour selection -> fully representative view of the SFG and AGN populations ("approaching 100% complete for z<1")

LOFAR, deep surveys and the future

LOFAR LBA upgrade

LBA pilot survey Mosaic 54 MHz

AST(RON Netherlands Institute for Radio Astronomy

The SKA extragalactic sky at 1 GHz

Low Frequency Radio Space Missions

ESA Netherlands-China low frequency Explorer

AST(RON

Pathfinder for Dark Age/Cosmic Dawn HI – 1 – 80 MHz ASTRON – antenna + receiver system (with Radboud + ISIS) Launch 22 May 2018 - first low frequency radio telescope in space (L2)

