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Planck Collaboration: The cosmological legacy of Planck
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Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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Statistical description of anisotropies

Cℓ ≡
〈

|aℓm|2
〉

(2ℓ + 1)Cℓ/4π

i.e. average over ms

is power at each l

T (θ, φ) =
∑

ℓm

aℓmYℓm(θ, φ)

Expand sky in spherical harmonics

Monopole is T₀ (=a₀₀)

l ≥ 2 modes give info on perturbations

Dipole is our “absolute motion”



The CMB Power Spectrum Full-sky (simulated) 
map of the CMB

Large-scale modes
Intermediate-scale 
modes Small-scale modes

l = oscillations per ∼180 degrees
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“Precision era” of cosmology



Planck Collaboration: The cosmological legacy of Planck
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Fig. 18. A compilation of recent CMB angular power spectrum measurements from which most cosmological inferences are drawn.
The upper panel shows the power spectra of the temperature and E-mode and B-mode polarization signals, the next panel the
cross-correlation spectrum between T and E, while the lower panel shows the lensing deflection power spectrum. Di↵erent colours
correspond to di↵erent experiments, each retaining its original binning. Note that for Planck, ACTPol, and SPTpol, the EE points
with large error bars are not plotted (to avoid clutter). The dashed line shows the best-fit ⇤CDM model to the Planck temperature,
polarization, and lensing data. See text for details and references.

son of the Planck power spectrum measurements with those
of other, contemporary, experiments is given in Fig. 18:
the WMAP data are taken from Bennett et al. (2013a); the
ACT and ACTpol data are from Das et al. (2014), Louis et al.
(2017), and Sherwin et al. (2017); the SPT and SPTpol data

are from George et al. (2015), Keisler et al. (2015), Story et al.
(2015), and Henning et al. (2018); the PolarBear data are from
POLARBEAR Collaboration et al. (2017); and BICEP2/Keck
data are from BICEP2 and Keck Array Collaborations et al.
(2015) and BICEP2 Collaboration et al. (2016). While Planck
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But let’s ignore all that 
beauty and precision!

And talk about the 
very lowest multipoles!



Lowest-order 
spherical 
harmonics

Let’s start with 
the monopole



CMB Sky



CMB Spectrum

Best blackbody in the Universe

(better than you can buy at Bob’s
Better Blackbody Boutique)



2 20. Cosmic background radiation

The collisions of electrons with nuclei in the plasma produce
free-free (thermal bremsstrahlung) radiation: eZ → eZγ. Free-
free emission thermalizes the spectrum to the plasma temperature
at long wavelengths. Including this effect, the chemical potential
becomes frequency-dependent,

µ(x) = µ0e−2xb/x , (20.5)

where xb is the transition frequency at which Compton scattering
of photons to higher frequencies is balanced by free-free creation of
new photons. The resulting spectrum has a sharp drop in bright-
ness temperature at centimeter wavelengths [6]. The minimum
wavelength is determined by ΩB .
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Figure 20.3: The shapes of expected, but so far unob-
served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.

20.2.3. Free-free distortion: Very late energy release (z ≪ 103).
Free-free emission can create rather than erase spectral distortion
in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by

∆Tff = Tγ Yff /x2, (20.6)

where Tγ is the undistorted photon temperature, x is the dimen-
sionless frequency, and Yff /x2 is the optical depth to free-free
emission:

Yff =

∫ z

0

Te(z′)−Tγ(z′)

Te(z′)

8πe6h2n2
e g

3me(kTγ)3
√

6πme kTe

dt

dz′
dz′ .

(20.7)
Here h is Planck’s constant, ne is the electron density and g is the
Gaunt factor [8].

20.2.4. Spectrum summary: The CMB spectrum is consistent
with a blackbody spectrum over more than three decades of fre-
quency around the peak. A least-squares fit to all CMB measure-
ments yields:

Tγ = 2.728± 0.002 K

nγ = (2ζ(3)/π2)T3
γ ≃ 413cm−3

ργ = (π2/15)T4
γ ≃ 4.68× 10−34 gcm−3 ≃ 0.262eVcm−3

|y| < 1.2× 10−5 (95% CL)

|µ0| < 9× 10−5 (95% CL)

|Yff | < 1.9× 10−5 (95% CL)

The limits here [9] correspond to limits [11–13] on energetic pro-
cesses ∆E/ECBR < 2×10−4 occurring between redshifts 103 and
5× 106 (see Fig. 20.4). The best-fit temperature from the COBE
FIRAS experiment is Tγ = 2.728± 0.002K [11].

Figure 20.4: Upper Limits (95% CL) on fractional energy
(∆E/ECBR) releases as set by lack of CMB spectral dis-
tortions resulting from processes at different epochs. These
can be translated into constraints on the mass, lifetime and
photon branching ratio of unstable relic particles, with some
additional dependence on cosmological parameters such as
ΩB [9,10].

20.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and
unpolarized to the 10% level. Current observations show that the
CMB is unpolarized at the 10−5 level but has a dipole anisotropy
at the 10−3 level, with smaller-scale anisotropies at the 10−5 level.
Standard theories predict anisotropies in linear polarization well
below currently achievable levels, but temperature anisotropies of
roughly the amplitude now being detected.

It is customary to express the CMB temperature anisotropies
on the sky in a spherical harmonic expansion,

∆T

T
(θ,φ) =

∑

ℓm

aℓmYℓm(θ,φ) , (20.8)

and to discuss the various multipole amplitudes. The power at a
given angular scale is roughly ℓ

∑

m |aℓm|2 /4π, with ℓ ∼ 1/θ.

20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
temperature

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+ β cosθ+ (β2/2)cos2θ +O(β3)
)

. (20.9)



CMB Spectrum2 20. Cosmic background radiation

The collisions of electrons with nuclei in the plasma produce
free-free (thermal bremsstrahlung) radiation: eZ → eZγ. Free-
free emission thermalizes the spectrum to the plasma temperature
at long wavelengths. Including this effect, the chemical potential
becomes frequency-dependent,

µ(x) = µ0e−2xb/x , (20.5)

where xb is the transition frequency at which Compton scattering
of photons to higher frequencies is balanced by free-free creation of
new photons. The resulting spectrum has a sharp drop in bright-
ness temperature at centimeter wavelengths [6]. The minimum
wavelength is determined by ΩB .
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Figure 20.3: The shapes of expected, but so far unob-
served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.

20.2.3. Free-free distortion: Very late energy release (z ≪ 103).
Free-free emission can create rather than erase spectral distortion
in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by

∆Tff = Tγ Yff /x2, (20.6)

where Tγ is the undistorted photon temperature, x is the dimen-
sionless frequency, and Yff /x2 is the optical depth to free-free
emission:

Yff =

∫ z

0

Te(z′)−Tγ(z′)

Te(z′)

8πe6h2n2
e g

3me(kTγ)3
√

6πme kTe

dt

dz′
dz′ .

(20.7)
Here h is Planck’s constant, ne is the electron density and g is the
Gaunt factor [8].

20.2.4. Spectrum summary: The CMB spectrum is consistent
with a blackbody spectrum over more than three decades of fre-
quency around the peak. A least-squares fit to all CMB measure-
ments yields:

Tγ = 2.728± 0.002 K

nγ = (2ζ(3)/π2)T3
γ ≃ 413cm−3

ργ = (π2/15)T4
γ ≃ 4.68× 10−34 gcm−3 ≃ 0.262eVcm−3

|y| < 1.2× 10−5 (95% CL)

|µ0| < 9× 10−5 (95% CL)

|Yff | < 1.9× 10−5 (95% CL)

The limits here [9] correspond to limits [11–13] on energetic pro-
cesses ∆E/ECBR < 2×10−4 occurring between redshifts 103 and
5× 106 (see Fig. 20.4). The best-fit temperature from the COBE
FIRAS experiment is Tγ = 2.728± 0.002K [11].

Figure 20.4: Upper Limits (95% CL) on fractional energy
(∆E/ECBR) releases as set by lack of CMB spectral dis-
tortions resulting from processes at different epochs. These
can be translated into constraints on the mass, lifetime and
photon branching ratio of unstable relic particles, with some
additional dependence on cosmological parameters such as
ΩB [9,10].

20.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and
unpolarized to the 10% level. Current observations show that the
CMB is unpolarized at the 10−5 level but has a dipole anisotropy
at the 10−3 level, with smaller-scale anisotropies at the 10−5 level.
Standard theories predict anisotropies in linear polarization well
below currently achievable levels, but temperature anisotropies of
roughly the amplitude now being detected.

It is customary to express the CMB temperature anisotropies
on the sky in a spherical harmonic expansion,

∆T

T
(θ,φ) =

∑

ℓm

aℓmYℓm(θ,φ) , (20.8)

and to discuss the various multipole amplitudes. The power at a
given angular scale is roughly ℓ

∑

m |aℓm|2 /4π, with ℓ ∼ 1/θ.

20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
temperature

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+ β cosθ+ (β2/2)cos2θ +O(β3)
)

. (20.9)

T0 = 2.7255±0.0006 K

But expected distortions smaller still
Tight constraints on distortions

ε0 = 0.2605 eV cm-3 νpeak = 160.24 GHz

n0 = 410.1 cm-3

T0 = -270.4245 C
T0 = -454.7641 F



Where did the 
CMB temperature 

come from?
T₀ = 2.7255 ± 0.0006 K 

(Fixsen 2009)

Triple point of water ÷ 100(= 2.7315 K)

√

15/2Kelvin(= 2.739 K)

30/11 Kelvin(= 2.727 K)

− ln(9α) Kelvin(= 2.723 K)

(2α/π)4mec
2/k (= 2.762 K)

(2/5)(αGme/2πmp)
1/4mpc

2/k (= 2.719 K)

16
√

2πα1/4

G
mec

2/k (= 2.727 K)

e−73
TPl (= 2.805 K)

[αG ≡ Gm2
e
/ch̄]

[πeπ
≃ 73]

eKelvin(= 2.718 K)

(hc/k) µLeagues−1(= 2.98 K)



The Hot Big Bang
48 CHAPTER 2 PRIMARY CMB ANISOTROPIES

FIG 2.20.—Schematic diagram of the history of the Universe from the Planck time to the present.

such as the fine structure constant α, vary with time? Are there deviations from the usual
Friedmann equations as predicted in some brane-world scenarios?

• What is the physics behind inflation? Are the initial perturbations purely adiabatic, or are
there isocurvature perturbations as well? Are cosmic defects produced at the end of inflation?
Can inflation be realised in string theory? Is inflation eternal?

• Are there signatures of physics at the Planck scale or beyond imprinted on the fluctuation
spectra?

• How did the Universe begin? Can string theory resolve the problem of the initial Big Bang
singularity? Can we probe through the Big Bang to a previous phase of the Universe’s history?

• What physics selects the vacuum solution for our Universe? String theory appears to have an

Where did the CMB 
really come from?

Last scattered at this epoch

Photons made at this epoch

Deriving from physics at this epoch



CMB history (eh)
Andrew McKellar

CN measurements 
at DAO (1940, 1941) 
⇒ rotational 
temp ≈ 2.3K

Herzberg (1950): 
“...only a very 

restricted meaning”

DAO 77”



Jasper’s contribution (data taken in 1965)



Radio background - 
absolute estimates 
plus estimates from 
sums of sources



with Ryley Hill and Kiyo Masui

The (extragalactic) monopole across the entire EM spectrum



Current measurement: T0=2.7255±0.0006K 
 (Fixsen 2009)

But ΔT/T~0.00001 on all scales 
 including our Hubble patch!

So if we could live in a ~3σ fluctuation 
 then we’re only ~10 from Cosmic Variance!

But isn’t the monopole coordinate dependent?

The CMB monopole



But we live in a potential (which is in another 
potential ...)

So the “true” CMB monopole isn’t 
what we measure anyway

(But this is only of order v2/c2)

And this helps underscore that it’s coordinate-
dependent

The CMB monopole



Monopole fluctuation is ambiguous - 
  depends on choice of hypersurface 
  (zero on constant radiation surface!)

Can still define monopole - 
  through sensible coordinate choice

Obvious choice is uniform matter slice 
  Or equivalently uniform energy density

Defining the monopole

Can calculate the transfer function 
  for the perturbations



Find that monopole fluctuation is indeed ~10-5

11

Note the presence of the Laplacian term in T0(k), which
will dominate on small scales, and implies that by cal-
culating C0 we are essentially calculating the (effectively
gauge independent) matter variance ⟨(δρ/ρ)2⟩. Therefore
we expect the variance C0 to diverge on small scales,
which is simply a reflection of the nonlinear nature of
matter fluctuations on small scales today. Again, the
importance of Eq. (91) will lie in its long wavelength be-
haviour.

V. LONG-WAVELENGTH BEHAVIOUR

The dipole transfer function for a comoving observer,
Eq. (83), is plotted in Fig. 3, together with the monopole
function for an observer on a uniform energy density slice,
Eq. (91), and the transfer functions for ℓ = 2, 3, and 4.
The transfer functions for ℓ > 1 can be calculated from
Eq. (77) in exactly the same way as for the dipole, with
the result

Tℓ(k) = jℓ(krLS)+
2k

aEH̄E
j′ℓ(krLS)+6

∫ R

E
ġ(t)jℓ[kr(t)]dt.

(93)
Note that the large-scale approximations involved in
Eq. (77) imply that this expression is only valid for scales
that are super-Hubble at last scattering. (The transfer
functions T1(k) and T0(k) are valid for small scales, since
for large krLS the second-to-last terms in both Eqs. (83)
and (91) dominate.)
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FIG. 3: Dipole transfer function T1(k)T (k) for a comoving
observer (solid curve). For comparison, the monopole transfer
functions for an observer on a uniform energy density slice,
T0(k)T (k), and the transfer functions for ℓ = 2, 3, and 4 are
also shown. The scale krLS = 102 corresponds roughly to the
Hubble scale at last scattering.

Using asymptotic forms for the Bessel functions, we
can see from Eq. (93) that Tℓ(k) should decay like kℓ as
krLS → 0, for ℓ > 1. This is verified in Fig. 3. However,
the figure also shows that T1(k) does not decay like k for

small k; instead it decays like k3, which is faster than the
decay rate of T2(k). We will see in Section V that this
suppression of the dipole on large scales is a consequence
of

To examine the behaviour of the transfer function
T1(k) in the limit k → 0, we can use the small-argument
approximations to the Bessel functions to give

T1(k) = −k3

30
(
r3
LS + 3r2

LSηLS

)
+ O(k5). (94)

This expression indicates that the dipole defined with re-
spect to the comoving frame receives vanishing contribu-
tion from infinite wavelength modes. Physically, the con-
stancy of the metric perturbation ψσ during matter dom-
ination means that the contribution to the anisotropies at
the source, ψσ(E)/3 [plus Doppler], is precisely canceled
by the contribution at the reception point, nµψ;µ

σ (R), for
infinite wavelength modes, according to Eq. (77). This
insensitivity to long wavelength modes is not accidental,
but actually follows from gauge invariance and the co-
variant conservation law, as we will see in Section [?].
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FIG. 4: Dipole transfer function T1(k)T (k) for a comoving
observer. Absolute values of individual contributions from
Sachs-Wolfe terms evaluated at emission, E, and at the obser-
vation point, R, as well as the line-of-sight ISW contribution,
are indicated.

The dipole transfer function, Eq. (83), suggests a diver-
gence in C1 like a power of k on small scales, although this
is moderated by the transfer function T (k). Geometri-
cally, the comoving matter and radiation worldlines coin-
cide on large scales, and begin to diverge on small scales.
This is why the observed dipole is O(102) larger than the
other multipoles. [Plot transfer fnc] [Nonlin structure
expected to make small correction] [Need actual calcula-
tion.]

As we did for the dipole, we can again examine the
behaviour of the dipole transfer function T0(k) in the
limit k → 0, giving

T0(k) = −k2

6
(
r2
LS + 2rLSηLS

)
+ O(k4). (95)

Zibin & Scott arXiv:0808.2047

Even if monopole (and dipole) coordinate-dependent
... can still define the expected variance



What do you call the 
study of the monopole?

What about the dipole? 
… diplomacy?



CMB dipole (from COBE satellite)



Defining the dipole
Dipole also ambiguous 
  (zero in “CMB rest frame”!)

Choose comoving matter field

Large contribution from small-scales, 
  which are non-linear 
(and Super-horizon contribution suppressed)

No “intrinsic dipole” for adiabatic perturbations 
(since matter frame = CMB frame)



“Extrinsic” dipole comes from our motion

Or determine motion from accelerations 
  due to local lumps of matter

Any deficit gives the dipole fluctuation 
  (doesn’t it?)

In principle estimate “real” motion with 
  aberration

Not in adiabatic models! 
The dipole is just our velocity relative to 
  the CMB LSS

Defining the dipole



Planck Collaboration: Peculiar velocity constraints from Planck data

Fig. 9.Bulk flow amplitudemeasured in Planck data with the all-
sky method, after subtraction (vectorially) of the Galactic contri-
bution (black crosses), compared with 95% upper limits derived
from simulations containing CMB and instrumental noise only
(blue arrows) or also including tSZ signal (black arrows). The
fact that the crosses are below the arrows at all scales shows that
there is no significant bulk flow detection.

The upper limits reach an approximately constant value above
scales around 500h−1 Mpc, as a small fraction of the clusters
in this sample are at larger distances. The 95% upper limits at
2400 h−1 Mpc are 893 km s−1 when all sources of noise are con-
sidered, reducing to 543 km s−1 when CMB plus instrumental
noise are taken into account.

The results reported in Fig. 9 refer to the nominal mask,
while in Table 2 we also quote results for the more restrictive
mask. The two sets of results are very similar, however.

In this analysis, we also fit for the direction of the measured
bulk flow. Even although the detection is not significant, it might
still be instructive to compare the best fit direction to other po-
tentially relevant directions. Results for various cluster configu-
rations and Planck data are displayed in Fig. 2, together with the
CMB dipole and the claimed dipole direction of Kashlinsky et al.
(2008). We notice that the direction we determine from Planck
data and MCXC clusters is quite different from both the CMB
dipole and the result of Kashlinsky et al. (2008). It aligns better
with the direction of the collection of clusters in the map, which
happen to be in a low instrumental noise area of the sky, as one
would expect from a noise–induced measurement. Indeed, sim-
ulations show that the directions of bulk flows of the magnitude
seen in the data cannot be recovered with great precision. Errors
are of the order of tens of degrees, depending on the bulk flow
direction (Mak et al. 2011).

Finally, we notice that the upper limits to the bulk flow that
we find with this method are above those found in the previous
section. This is not surprising, as we are fitting here for both the
velocity direction and amplitude, and we compute errors in a dif-
ferent way. The upper limits obtained with this approach should
be considered as more conservative. Nevertheless they are about
a factor of five better than what was found using WMAP data.

4.2.3. Revisiting the Kashlinsky et al. (2010) filter

The idea of constraining the local bulk flow of matter by look-
ing at the dipolar pattern of the kSZ in the galaxy cluster pop-
ulation was first discussed by Haehnelt & Tegmark (1996) and
further developed by Kashlinsky & Atrio-Barandela (2000). The
method was applied by Kashlinsky et al. (2008, 2009) toWMAP
data, analyses that have been followed by more recent studies
(Kashlinsky et al. 2010, 2011). In this section, we perform a di-
rect application of their filter to both WMAP and Planck data,
and interpret it at the light of the results already outlined in this
work.

We first implement the filter of Kashlinsky et al. (2010) on
the MCXC cluster sample and theWMAP-7 data. After using the
extended temperature KQ75 mask, we obtain filtered maps from
the cleaned Q, V and W band WMAP data. Since the filtered
maps for the four W-band Differencing Assemblies (DAs) used
by those authors are publicly available4, a direct comparison of
the filtered maps can be performed: for instance, for the filtered
maps corresponding to the fourth W-band DA, the temperature
rms outside the joint mask in our filtered map is 74µK, very
close to the 77µK obtained from the map used by Kashlinsky
et al. (2010). The rms of the difference map amounts to 35 µK,
and a visual inspection shows the similarity between both maps.
Each cluster is assigned a radius of 25′, and the remove dipole
routine from HEALPix is used when computing the monopole
and dipole in the subset of pixels surrounding the clusters. The
monopole and dipole components obtained for the WMAP W
band are displayed by the black, vertical dot-dashed lines in
Fig. 10. These are in very good agreement with the results ob-
tained by Kashlinsky et al. (2010).

We next distribute the same number of clusters surviving the
mask randomly on the unmasked sky 1000 times, assign them a
circle of radius 25′ and repeat the monopole and dipole compu-
tation. For each of the 1000 cluster configurations, we separately
compute the monopole and dipole for each of the DAs. This per-
mits us to obtain the rms for each component and DA, in such
a way that a combined estimate of the monopole and dipole can
be extracted from all DAs by inverse-variance weighting the es-
timate for each DA. This is carried out for the real cluster con-
figuration on the sky and for the 1000 mock (random) configura-
tions. From the latter, we obtain the histograms shown in Fig. 10.
The average quantities out of the 1000 simulations are displayed
by the solid, vertical lines. Black lines refer to WMAP data, and
our results show that the y-component of the dipole is peculiar,
in the sense that it falls far in the negative tail of the distribution.

When repeating these analyses with the 2D-ILCmap, we ob-
tain the results displayed by the red lines in the same figure. In
this case, the dipole components from the real data fall further
outside the distribution provided by the histograms, as none of
the 1000 mock cluster configurations provides a dipole of larger
amplitude than the one measured from the real MCXC sample.
These results suggest that the dipole measured at the MCXC
cluster positions is indeed peculiar if compared to dipole esti-
mates from randomized cluster positions.

Nevertheless, there is one aspect to be studied more closely,
namely the angular distribution of clusters on the sky. In what
follows, the filtered map built upon the 2D-ILC data will be used.
So far our Monte Carlo simulations assumed that clusters were
placed randomly on the sky, i.e., the clustering of our sources
has been neglected. We next perform tests in which the angu-
lar configuration of our MCXC cluster sample is preserved. The
4 The data were downloaded from the URL site
http://www.kashlinsky.info.
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Planck 
intermediate 
paper XIII 
(arXiv:1303.5090)

Kinetic Sunyaev-
Zeldovich effect

Places limit on 
large bulk flows

The matter and 
CMB frames are 
the same



What about Planck’s dipole?

The “orbital dipole” is used to calibrate 
So the “solar dipole” can be independently 
measured 
This is the currently most precise dipole

Hence the best estimate of our velocity 
relative to the distance “rest frame”



Planck Collaboration: The cosmological legacy of Planck

Table 2. COBE, WMAP, LFI, HFI, and Planck combined measurements of the Solar dipole. Note that the uncertainties are dom-
inated by systematic e↵ects, whose assessment is fully discussed in Planck Collaboration II (2018) and Planck Collaboration III
(2018).

Galactic coordinates

Amplitude l b
Experiment [ µKCMB] [deg] [deg]

COBE a . . . . . . . . . . . . . . . . . . . 3358 ± 24 264.31 ± 0.20 48.05 ± 0.11
WMAP b . . . . . . . . . . . . . . . . . . 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03
Planck 2015 nominal c. . . . . . . . . 3364.5 ± 2.0 264.00 ± 0.03 48.24 ± 0.02
LFI 2018 d . . . . . . . . . . . . . . . . . 3364.4 ± 3.1 263.998 ± 0.051 48.265 ± 0.015
HFI 2018 d . . . . . . . . . . . . . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005
Planck 2018 e. . . . . . . . . . . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005

a Kogut et al. (1993); Lineweaver et al. (1996); we have (linearly) added statistical and systematic uncertainty estimates.
b Hinshaw et al. (2009).
c The 2015 Planck “nominal” Solar dipole was chosen as a plausible combination of the LFI and HFI 2015 measurements to subtract the dipole

from the 2018 frequency maps. The di↵erence compared with the final determination of the dipole is very small for most purposes.
d Uncertainties include an estimate of systematic errors. In the case of HFI, we have linearly added statistical and systematic errors.
e The current best Planck determination of the dipole is that of HFI (Planck Collaboration III 2018). The central value for the direction corresponds

to RA = 167.�942 ± 0.�007, Dec = �6.�944 ± 0.�007 (J2000). The uncertainties are the (linear) sum of the statistical, and systematic uncertainties
detailed in Planck Collaboration III (2018).The uncertainty on the amplitude does not include the 0.02% uncertainty on the temperature of the
CMB monopole.

Planck Collaboration III (2018), they are no longer significantly
a↵ected by systematic e↵ects (in the sense that the results are
consistent between frequencies, sky fractions and component-
separation methods used, although the uncertainties are not
purely statistical). Considering that the uncertainties in the HFI
determination are much lower than those of LFI, we recommend
that users adopt the HFI determination of the Solar dipole as the
most accurate one available from Planck.

We note that in all the released 2018 maps, the 2015 “nom-
inal” Solar dipole has been subtracted, which is slightly dif-
ferent than the final best dipole. (The induced quadrupole has
also been subtracted from the maps.) This was done in order to
produce a consistent data set, which is independent of the best
determination of dipole parameters, made at a later time sep-
arately at each individual frequency. This implies that a very
small residual Solar dipole is present in all the released maps;
this can be removed if desired using the procedure described in
Planck Collaboration III (2018).

It is also useful to note that the Solar dipole can still be mea-
sured with high signal-to-noise ratio at 545 GHz. The 545-GHz
data were not calibrated on the orbital dipole, but instead on
observations of Uranus and Neptune (Planck Collaboration III
2018). Therefore the photometric accuracy of this calibration is
limited by that of the physical emission model of the planets,
to a level of approximately 5 %. However, the dispersion of the
Solar dipole amplitude measured in individual 545-GHz detec-
tor maps is within 1 % of that at lower frequencies. This im-
plies that, in actual fact, the planet model can be calibrated on
this measurement more precisely than has been assumed so far
(Planck Collaboration Int. LII 2017). It also means that an im-
proved model can be extended to recalibrate the 857 GHz chan-
nel. These improvements have not been implemented in the 2018
release.

The amplitude of the dipole provides a constraint for build-
ing a picture of the local large-scale structure, through the
expected convergence of bulk-flow measurements for galaxies
(e.g., Scrimgeour et al. 2016). The new best-fit dipole ampli-
tude is known more precisely than the CMB monopole, and

even when we fold in an estimate of systematic uncertainties
it is now known to about 0.025 % (essentially the same as the
monopole). The dipole amplitude corresponds to � ⌘ v/c =
(1.23357 ± 0.00036) ⇥ 10�3 or v = (369.82 ± 0.11) km s�1,
where we have (linearly) added in the systematic uncertainties.
When giving the amplitude of the dipole in temperature units
one should also include the uncertainty in T0.

The Solar dipole direction lies just inside the little-known
constellation of Crater (near the boundary with Leo). The error
ellipse of Planck’s dipole direction (a few arcsec in radius, or
around 3000 including systematic uncertainties) is so small that it
is empty in most published astronomical catalogues. We discuss
the cosmological implications of the dipole in Sect. 5.1.

The Sun’s motion in the CMB frame is not the only rela-
tive velocity of interest, and indeed from a cosmological per-
spective more relevant would be the motion of the centre of
our Galaxy relative to the CMB or the motion of our group of
galaxies relative to the CMB. The peculiar motion of the Local
Group is well known to have a larger speed than that of the
Sun–CMB, due to the roughly anti-coincident direction of our
rotation around the Galaxy. It is this larger peculiar velocity that
has been the focus of studies to explain the origin of the motion
in the context of structures in our extragalactic neighbourhood
(e.g., Lynden-Bell et al. 1988; Tully et al. 2008). Estimates of
the corrections required to obtain the motion of the Galactic cen-
tre relative to the CMB and the motion of the centre-of-mass of
the Local Group relative to the CMB were given by Kogut et al.
(1993) and have seldom been revisited since then. We summa-
rize more modern determinations in Table 3.

Firstly, we take the estimate of the Sun’s motion relative
to the Local Standard of Rest from Schönrich et al. (2010),
which uses nearby stars, and the estimate of the motion of
the LSR around the centre of the Milky Way from McMillan
(2011), which combines studies of larger-scale Galactic dynam-
ics. These can be subtracted from the Solar dipole to give the
velocity of the Galactic centre relative to the CMB, as presented
in the fourth line of Table 3.
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Planck’s 2018 dipole

Position now known to ∼30" 
(uncertainties are systematics dominated)



Planck’s 2015 dipole amplitude:
v = 0.12345% c !

Planck’s 2018 dipole amplitude:

v = (0.12336±0.00004)% c



?

Where’s the dipole direction?



What constellation am I in?

CRATER
(the cup)
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Secondly, we take the estimate of the Sun’s velocity rela-
tive to the centre of the Local Group from Diaz et al. (2014),
found by averaging velocities of members galaxies (as also
performed by several other studies, e.g., Yahil et al. 1977;
Courteau & van den Bergh 1999; Mikulizky 2015). This vector
can be subtracted from the Solar dipole velocity to derive the
velocity of the Local Group relative to the CMB. The value is
(620 ± 15) km s�1 in a direction (known to about a couple of de-
grees) that lies about 30� above the Galactic plane and is nearly
opposite in latitude to the direction of Galactic rotation. The un-
certainty in the Local Group’s speed relative to the CMB is al-
most entirely due to the uncertainty in the speed of the Sun rela-
tive to the centre-of-mass of the Local Group.

Table 3. Relative velocities involving the CMB frame, the
Galactic centre, and the Local Group.

Relative Speed l b
velocity [km s�1] [deg] [deg]

Sun–CMB a . . . . . 369.82 ± 0.11 264.021 ± 0.011 48.253 ± 0.005

Sun–LSR b . . . . . . 17.9 ± 2.0 48 ± 7 23 ± 4
LSR–GC c . . . . . . 239 ± 5 90 0
GC–CMB d. . . . . . 565 ± 5 265.76 ± 0.20 28.38 ± 0.28

Sun–LG e . . . . . . . 299 ± 15 98.4 ± 3.6 �5.9 ± 3.0
LG–CMB d. . . . . . 620 ± 15 271.9 ± 2.0 29.6 ± 1.4

a Velocity of the Sun relative to the CMB; Planck 2018.
b Velocity of the Sun relative to the Local Standard of Rest

from Schönrich et al. (2010), adding the statistical and systematic
uncertainties.

c Rotational velocity of the LSR from McMillan (2011).
d Resulting velocity, using non-relativistic velocity addition and assum-

ing uncorrelated errors.
e Velocity of the Sun relative to the Local Group from Diaz et al.

(2014).

2.2. Frequency maps and their properties

The Low and High Frequency Instruments together contained
an array of 74 detectors in nine bands, covering frequencies be-
tween 25 and 1000 GHz, imaging the whole sky twice per year
with angular resolution between 330 and 50. Table 4 gives the
main characteristics of the Planck frequency maps, including an-
gular resolution and sensitivity.

An extensive series of null tests for the consistency of
the maps is provided in Planck Collaboration XXXI (2014),
Planck Collaboration I (2016), Planck Collaboration II (2018),
and Planck Collaboration III (2018). We find impressive con-
sistency between the maps. Consistency of the absolute cali-
brations across the nine frequency channels is discussed exten-
sively in the same papers, and we discuss inter-instrument con-
sistency in Appendix C. Some considerations about the princi-
ples followed in the Planck analysis (including a discussion of
blinding) are given in Appendix D. For the main CMB chan-
nels (70–217 GHz) the inter-calibration is at the level of 0.2 %
(Planck Collaboration I 2016). At 143 GHz the absolute photo-
metric calibration is an astounding 0.02 %, though it applies only
to the largest angular scales. For the HFI polarization maps, the
largest source of uncertainty is the polarization e�ciency (Table
4).

The beams are estimated from planetary observations and
the polarized beam models are combined with the specific scan-
ning strategy to generate “e↵ective beams,” which describe
the relation of maps to the sky (see Planck Collaboration IV
2016; Planck Collaboration VII 2016). The response in har-
monic space is known as a window function, and both the mean
windows and the major error eigenmodes are provided as part of
the legacy archive (PLA). Typical uncertainties are well below
0.1 % for the main CMB channels.

Figs 1 and 2 show views of the sky as seen by Planck
in intensity and polarization. Note that Planck uses HEALPix
(Górski et al. 2005) as its pixelization scheme, with resolution
labelled by the Nside value. In HEALPix the sphere is divided
into 12 N2

side pixels. At Nside = 2048, typical of Planck maps,
their mean spacing is 1.70. Each panel in Fig. 1 shows the in-
tensity in one of Planck’s nine frequency channels, in Galactic
coordinates. In all cases the figures are unable to convey both
the angular resolution and the dynamic range of the Planck data.
However, they serve to show the major features of the maps and
the numerous astrophysical components that contribute to the
signal. Similarly, Fig. 2 shows the polarization properties mea-
sured by Planck at seven frequencies. The CMB component of
the maps has a 6% linear polarization, though the foregrounds
exhibit di↵ering polarization levels as a function of frequency.

The most prominent feature in the maps is the Galactic plane,
steadily brightening to both higher (where Galactic dust domi-
nates the emission at low latitudes) and lower frequency (where
synchrotron and free-free emission dominate). At high Galactic
latitudes, and over much of the sky between 70 and 217 GHz, the
signal is dominated by the “primary” CMB anisotropies, which
were frozen in at the surface of last scattering and provide the
main information for constraining our cosmological model.

To be more quantitative, it is useful to introduce two-point
statistics, in the form of a two-point angular correlation func-
tion, or its harmonic-space counterpart, the angular power spec-
trum. We follow the usual convention and perform an harmonic
decomposition of the sky maps. If T , Q, and U represent the in-
tensity and polarization3 Stokes parameters (in thermodynamic
temperature units) then we define

a`m =
Z

dn̂ Y⇤`m(n̂ ) T (n̂ ), (1)

aE
`m ± iaB

`m =

Z

dn̂ ⇤±2Y⇤`m(n̂ ) (Q ± iU) (n̂ ), (2)

where ±2Y`m are the spin-spherical harmonics, which are pro-
portional to Wigner D-functions4. The polarization is defined
through the scalar E and pseudo-scalar B fields, which are non-
local, linear combinations of Q and U (Zaldarriaga & Seljak
1997; Kamionkowski et al. 1997; Hu & White 1997; Dodelson
2003). For small patches of sky E and B are simply Q and U in
the coordinate system defined by the Fourier transform coordi-
nate ` (Seljak 1997). Alternatively, near a maximum of the polar-
ization the direction of greatest change for an E mode is parallel
or perpendicular to the polarization direction (see Fig. 7).

When statistical isotropy may be assumed, it demands that
ha⇤`ma`0m0 i be diagonal and depend only on `. We write
D

aT⇤
`m aT

`0m0
E

= CTT
` �`0` �m0m (3)

3Planck uses the “COSMO” convention for polarization (cor-
responding to the FITS keyword “POLCCONV”), which di↵ers
from the IAU convention often adopted for astrophysical data sets
(Planck Collaboration ES 2018).

4See e.g. Wikipedia.
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Dipole evolves as we circle the Galaxy

Moss, Scott & Zibin arXiv:0706.4482 & 0709.4040



• Monopole: T₀=(2.7255±0.0006)K 

• CMB last-scattering surface defines a rest frame 

• It’s the frame with no observable dipole 

• Relative to that frame we’re moving at ≈ 370km/s 

• β=0.0012345 towards the constellation Crater 

• Local Group 620km/s relative to CMB

Recall issues relevant to monopole and dipole

And there are other effects…



• Dipole-modulate monopole → CMB dipole 

• Dipole-modulation of all other multipoles 

• Aberration of anisotropies 

• Increase in monopole by β²/6 

• Generation of Ο(β²) quadrupole

Well known! 

Planck 2013 

Planck 2013 

Unmeasurable 

y spectrum?

And there are other effects…

And related effects at other wavelengths, 
e.g. modulation of source counts



Jasper (and Chris’) dipole contribution



n̂ =
n̂

′ +
[

(γ − 1)n̂ ′
· v̂ + γβ

]

v̂

γ(1 + n̂
′
· β)

δT (n̂ ) = T0n̂ · β + δT
′(n̂ −∇(n̂ · β))(1 + n̂ · β)

Now

with

observed frame
CMB frame

v/c

To 1st order in β:

So finally: dipole deflections modulation

T (n̂ ) =
T ′(n̂ ′)

γ(1 − n̂ · β)

T
′(n̂ ′) = T

′(n̂ −∇(n̂ · β)) ≡ T0 + δT
′(n̂ −∇(n̂ · β))

\def\mathbi#1{\textbf{\em #1}}

T({\hat{\mathbi{n\,}}}) = {T^
\prime({\hat{\mathbi{n\,}}}^\prime) 
\over \gamma(1-{\hat{\mathbi{n
\,}}}^\prime\cdot\mbox{\boldmath
$\beta$})}

\def\mathbi#1{\textbf{\em #1}}

{\hat{\mathbi{n\,}}} =

 {{\hat{\mathbi{n\,}}}^\prime + 
\left[(\gamma-1)

 {\hat{\mathbi{n\,}}}^\prime
\cdot{\hat{\mathbi{v\,}}}

 + \gamma\beta\right]

 {\hat{\mathbi{v\,}}}\over

 \gamma(1+{\hat{\mathbi{n\,}}}^
\prime\cdot\mbox {\boldmath$

{\boldmath$\beta$})}

\def\mathbi#1{\textbf{\em #1}}

T^\prime({\hat{\mathbi{n\,}}}^
\prime) = T^\prime({\hat{\mathbi{n
\,}}}-\nabla({\hat{\mathbi{n\,}}}
\cdot\mbox{\boldmath$\beta$}))
\equiv T_0 + \delta T^
\prime({\hat{\mathbi{n\,}}}-
\nabla({\hat{\mathbi{n\,}}}\cdot

Boosting frames
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ations in the velocity direction, and reduces them in the oppo-
site direction. This is the same e�ect which converts a portion
of the CMB monopole into the observed dipole. The e�ect on
the CMB fluctuations is to increase the amplitude of the power
spectrum by approximately 0.25% in the velocity direction, and
decrease it correspondingly in the anti-direction. Second, there
is an “aberration” e�ect, in which the apparent arrival direc-
tion of CMB photons is pushed toward the velocity direction.
This e�ect is small, but non-negligible. The expected velocity
induces a peak deflection of � = 4.2⇧ and a root-mean-squared
(rms) deflection over the sky of 3⇧, comparable to the e�ects
of gravitational lensing by large-scale structure, which are dis-
cussed in Planck Collaboration XVII (2013). The aberration ef-
fect squashes the anisotropy pattern on one side of the sky and
stretches it on the other, e�ectively changing the angular scale.
Close to the velocity direction we expect that the power spec-
trum of the temperature anisotropies, C⇧, will be shifted so that,
e.g., ⇧= 1000⌅ ⇧= 1001, while ⇧= 1000⌅ ⇧= 999 in the anti-
direction. In Fig. 1 we plot an exaggerated illustration of the
aberration and modulation e�ects. For completeness we should
point out that there is a third e�ect, a quadrupole of amplitude
�2 induced by the dipole (see Kamionkowski & Knox 2003).
However, extracting this signal would require extreme levels of
precision for foreground modelling at the quadrupole scale, and
we do not discuss it further.

In this paper, we will present a measurement of �, exploiting
the distinctive statistical signatures of the aberration and mod-
ulation e�ects on the high-⇧ CMB temperature anisotropies. In
addition to our interest in making an independent measurement
of the velocity signature, the e�ects which velocity generates on
the CMB fluctuations provide a source of potential bias or con-
fusion for several aspects of the Planck data. In particular, ve-
locity e�ects couple to measurements of: primordial “⇤NL”-type
non-Gaussianity, as discussed in Planck Collaboration XXIV
(2013); statistical anisotropy of the primordial CMB fluctua-
tions, as discussed in Planck Collaboration XXIII (2013); and
gravitational lensing, as discussed in Planck Collaboration XVII
(2013). There are also aspects of the Planck analysis for which
velocity e�ects are believed to be negligible, but only if they are
present at the expected level. One example is measurement of
fNL-type non-Gaussianity, as discussed in Catena et al. (2013).
Another example is power spectrum estimation — as discussed
above, velocity e�ects change the angular scale of the acous-
tic peaks in the CMB power spectrum. Averaged over the full
sky this e�ect is strongly suppressed, as the expansion and con-
traction of scales on opposing hemispheres cancel out. However
the application of a sky mask breaks this cancellation to some
extent, and can potentially be important for parameter estima-
tion (Pereira et al. 2010; Catena & Notari 2012). For the 143
and 217 GHz analysis mask used in the fiducial Planck CMB
likelihood (Planck Collaboration XV 2013), the average lensing
convergence field associated with the aberration e�ect (on the
portion of the sky which is unmasked) has a value which is 13%
of its peak value, corresponding to an expected average lensing
convergence of �⇥ 0.13 = 1.5⇥ 10�4. This will shift the angular
scale of the acoustic peaks by the same fraction, which is degen-
erate with a change in the angular size of the sound horizon at
last scattering, ⇥⇤ (Burles & Rappaport 2006). A 1.5⇥ 10�4 shift
in ⇥⇤ is just under 25% of the Planck uncertainty on this param-
eter, as reported in Planck Collaboration XVI (2013) — small
enough to be neglected, though not dramatically so. This there-
fore motivates us to test that the observed aberration signal is
not significantly larger than expected. With such a confirmation
in hand, a logical next step is to correct for these e�ects by a pro-

(a) T primordial

(b) Taberration

(c) Tmodulation

Fig. 1. Exaggerated illustration of the Doppler aberration and
modulation e�ects, in orthographic projection, for a velocity
v = 260 000 km s�1 = 0.85c (approximately 700 times larger
than the expected magnitude) toward the northern pole (indi-
cated by meridians in the upper half of each image on the left).
The aberration component of the e�ect shifts the apparent posi-
tion of fluctuations toward the velocity direction, while the mod-
ulation component enhances the fluctuations in the velocity di-
rection and suppresses them in the anti-velocity direction.

cess of de-boosting the observed temperature (Notari & Quartin
2012; Yoho et al. 2012).

Before proceeding to discuss the aberration and modulation
e�ects in more detail, we note that in addition to the overall pe-
culiar velocity of our Solar System with respect to the CMB,
there is an additional time-dependent velocity e�ect from the or-
bit of Planck (at L2, along with the Earth) about the Sun. This
velocity has an average amplitude of approximately 30 km s�1,
less than one-tenth the size of the primary velocity e�ect. The
aberration component of the orbital velocity (more commonly
referred to in astronomy as “stellar aberration”) has a maximum
amplitude of 21⇧⇧ and is corrected for in the satellite pointing.
The modulation e�ect for the orbital velocity switches signs be-
tween each 6-month survey, and so is suppressed when using
multiple surveys to make maps (as we do here, with the nominal
Planck maps, based on a little more than two surveys), and so
we will not consider it further.
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Simulated CMB

Aberration 
for β=0.85

Modulation 
for β=0.85



Aberration

Modulation

Valve?



With Planck we can try to measure both 
the aberration and boosting effects

This could be done either in map space 
or harmonic space

Harmonic space is more efficient 
  and uses machinery of T₁T₂T₃T₄

\def\mathbi#1{\textbf{\em #1}}

T({\hat{\mathbi{n\,}}}) = {T^
\prime({\hat{\mathbi{n\,}}}^\prime) 
\over \gamma(1-{\hat{\mathbi{n
\,}}}^\prime\cdot\mbox{\boldmath
$\beta$})}

\def\mathbi#1{\textbf{\em #1}}

{\hat{\mathbi{n\,}}} =

 {{\hat{\mathbi{n\,}}}^\prime + 
\left[(\gamma-1)

 {\hat{\mathbi{n\,}}}^\prime
\cdot{\hat{\mathbi{v\,}}}

 + \gamma\beta\right]

 {\hat{\mathbi{v\,}}}\over


Boosting frames



Angles squashed 
and anisotropies 

boosted in 
+ve direction

Angles stretched 
and anisotropies 

diminished in 
−ve direction

Or can consider this as an effect which 
couples harmonics

This was measured convincingly in 2013 Planck data set

Boosting frames



Aberration ModulationTotal

 Grey histogram: without  Pink histogram: with β effects

Vertical lines are different data combinations



• Velocity Measured at 4−5σ 

• (Complication with hemispheric asymmetry) 

• Slightly biases parameters for partial sky coverage 

• Probably doesn’t tell us anything new, but it’s cute! 

•Only possible with Planck!

“Eppur si muove” 
[And yet it moves]

So what?



Are these “boosting” effects 
actually interesting?

Could we tell about an 
“intrinsic dipole”?

No, because you’d get these 
effects with any dipole!



Sky appears dipole-
modulated 

at large angular scales 
(see Planck 2015 I&S paper) 

Not caused by velocity 
(only large scales) 

- is it statistically significant? 



Do the 2 sides of the 
CMB sky look alike?



Do the 2 sides of the 
Moon look alike?



Dipole modulation/ 
hemispheric asymmetry 

is real, but subtle

How do we assess 
whether this is 

statistically unlikely?

Maps modulated by ≃ 6%, 
but only out to lmax ≃ 64



“Cosmic variance” 
expectation for 

dipole modulation to lmax :

A&A proofs: manuscript no. IandS_rearranged_full

duced by masking:

f1m ≡
∫

dΩ Y ∗
1m(Ω)M(Ω), (45)2050

where M(Ω) is the mask. Finally, we correct the direc-
tion for the effects of inhomogeneous noise which is not ac-
counted for in the filtering process, by weighting the X̃m by
the inverse of the variance derived from filtered and mean-2055

field corrected simulations.
The physics is readily accessible in this estimator: the

ℓ dependence in modulation determined by the parameter
X is expressed in the δCℓℓ+1 factor, and the relevant scales
appear directly in the limits of the sum. We consider the2060

estimator over the range ℓmin = 2 ≤ ℓ ≤ ℓmax. The modu-
lation amplitude and direction are then given by

Ã =
√

X̃2
0 + 2|X̃1|2, (46)

θ̃ = cos−1

(

X̃0

Ã

)

, (47)

φ̃ = − tan−1

(

Im[X̃1]

Re[X̃1]

)

. (48)2065

It is worth re-emphasizing that the quantities Ã, θ̃, and φ̃
are all dependent on the ℓ range considered.

As a consequence of the central limit theorem, for
sufficiently large ℓmax, the X̃s are Gaussian distributed2070

with mean zero, so that the amplitude parameter is then
Maxwell-Boltzmann distributed. We fit to this distribution
for ℓmax ≥ 10 when computing the p-value so as not to be
influenced by Poisson noise in the tails of the empirical dis-
tribution (and we have determined that this is a good fit to2075

the simulations by applying a Kolmogorov-Smirnoff test).
For the case of scalar amplitude modulation (i.e., X = As),
and ℓmin = 2, the cosmic-variance-limited expectation for
the modulation amplitude from statistically isotropic skies
is2080

〈

∆As

As

〉

≃

√

48

π(ℓmax + 4)(ℓmax − 1)
. (49)

This is the cosmic variance for a scale-invariant dipole mod-
ulation, and gives a more explicit expression than the ℓ−1

max
scaling discussed in Hanson & Lewis (2009).2085

The top panel of Fig. 30 presents results for the p-value
of the fitted modulation amplitude as a function of ℓmax.
Note that there are several peaks, at ℓ ≃ 40 and ℓ ≃ 67 (the
focus of most attention in the literature), and ℓ ≃ 240. The
latter peak, while not previously emphasized, is also present2090

in the WMAP results (see Fig. 15 in Bennett et al. 2011).
It is also interesting to note that a modulation amplitude is
observed at ℓmax ≃ 800 that is somewhat lower than what
one would typically expect for a statistically isotropic sky.
However, the significance is not at the level of the excess2095

dipole modulation at low ℓ and will not be discussed fur-
ther. The dip at ℓmax ≃ 67, with a p-value of 0.9–1.0 %,
corresponds to the well-known low-ℓ dipole modulation.6

6 Actually only SEVEM and SMICA achieve their minimum at
ℓmax = 67, whereas NILC and Commander achieve theirs at
ℓmax = 14 and 240, respectively. Such scatter is expected when
searching over a large number of possible ℓ ranges. The recon-
structed amplitudes for each component-separation method are
well within the error budgets of the estimator.
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Fig. 30. Probability determined from the QML analysis for a
Monte Carlo simulation to have a larger dipole modulation am-
plitude than the Commander (red), NILC (orange), SEVEM (green),
and SMICA (blue) data sets, with (top panel) ℓmin = 2 or (bottom
panel) ℓmin = 100. No significant modulation is found once the
low-ℓ signal is removed. We emphasize that the statistic here is
cumulative and apparent trends in the curves can be misleading.

Table 23 presents the corresponding dipole modulation pa-
rameters, which are seen to be consistent with previous 2100

studies. Note that the mean amplitude expected for a set
of statistically isotropic simulations at this ℓmax is 2.9 %
(in close agreement with the expected value due to cosmic
variance, Eq. 49).

We have therefore determined a phenomenological sig- 2105

nature of modulation for ℓ = 2–67 with a p-value of 0.9–
1.0 %. If such a signal had been predicted by a specific
model, then we could claim a significance of about 3 σ. How-
ever, in the absence of such an a priori model, we can assess
how often we might find a 3 σ effect by chance, given that it 2110

could have occurred over any ℓ range. Since we are looking
for a large-scale phenomenon, we assume that the analysis
should include the corresponding low-ℓ modes and start at
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Map modulation is half of 
this, e.g. 2.9% for lmax=67



Dipolar power modulation: 
harmonic analysis 
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We use the harmonic QML estimator introduced in Moss et al 2011 (see also The 
Planck Collaboration, 2014, 571:A17-A27) to Planck intensity maps. 

For ℓmin=2 we found a ~3σ dipole modulation at ℓmax~65 with a ~6.3% amplitude. 

There is also evidence for modulations at ℓmax~40, and ℓmax~240. 

However, the latter becomes much less significant when adopting ℓmin=100, i.e. 
removing large angular scales. 
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Our sky might look like this 
deal from the game “Set”

You should only get excited 
if it looks like this!



Right now the result doesn’t 
look very remarkable

But if we had a predictive model 
that would change everything
Large scales are special, so 

we should keep looking
Polarization offers the promise 

of an independent test



Quadrupole: 
also some special issues 

but out of time ...



Other backgrounds 
will also give dipoles

Depends on monopole 
and spectral shape

Radio dipole, optical dipole, 
and neutrino dipole?



Cosmic neutrino background is 1.9K (and F-D) 
3 flavour states decoupled at about 1 second 
But last-scattering surface(s) complicated! 

Neutrino dipole?

2

the densities of matter and radiation are equal. Using
the standard cosmological parameters [21], this equates
to the 200 h−1 Mpc difference alluded to in the introduc-
tion.

Massive neutrinos slow down once they become non-
relativistic, so the integral determining the distance to
the last scattering surface generalizes to:

χ =

∫ t0

ti

dt

a(t)

p0/a
√

(p0/a)2 + m2
ν

(3)

where the second term in the integrand is the redshifted
velocity p/E, with p0 the current neutrino momentum.
The neutrino temperature today is Tν = 1.95 × 10−4

eV, so there will be a range of p0’s drawn from a Fermi-
Dirac distribution, each of which will be associated with
a different distance to the LSS. Fig. 1 plots this distance
as a function of neutrino mass for two different values of
the present day neutrino momentum.
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FIG. 1: The comoving distance travelled by a massive neu-
trino since decoupling until today as a function of mass for
two different values of the neutrino momentum. Neutrinos
with smaller momenta are travelling more slowly and there-
fore travel a shorter distance. Note that for masses above
10−4 eV, the neutrino LSS is much closer than that of the
CMB.

Since neutrinos with different momenta arrive from dif-
ferent distances2, the last scattering surface of the CNB
is quite broad compared to that of the CMB. To quan-
tify this, we can define the probability that a neutrino
last scattered a distance χ away from us, or the visibility

2 Ref. [22] also mentioned this feature of neutrinos and proposed
to exploit it to test the Copernican Principle.

function:

dP

dχ
=

dP

dp0

(

dχ

dp0

)

−1

(4)

where the equality uses the chain rule; the first differ-
ential probability is given by the massless Fermi-Dirac
distribution [23]:

dP

dp0
=

2

3ζ(3)T 3
ν

p2
0

ep0/Tν + 1
; (5)

and the second term on the right is obtained by differen-
tiating Eq. (3).

Fig. 2 displays the probability that a neutrino with
a given mass arrived from a distance χ. Note for all
masses above 10−4 eV, the spread in arrival distances is
much larger than the spread in the CMB last scattering
surface. The width of the CNB and CMB last scattering
surfaces have different origins: the CMB does not have an
infinitely thin last scattering surface because the process
of recombination, and therefore decoupling, extends over
a finite time period. The CNB last scattering surface
is thick, reflecting the different velocities of the different
momenta in the Fermi-Dirac distributions.
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FIG. 2: The probability that a neutrino with mass m last
scatters at a given comoving distance from us (the visibility
function). Massive neutrinos travel more slowly than massless
neutrinos so arrive here from much closer distances. Also
shown is the last scattering surface of the cosmic microwave
background, virtually indistinguishable from that of an mν =
10−4 eV neutrino.

One might ask about the last scattering surface of
heavier particles, such as sterile neutrinos or ordinary
cold dark matter particles. Those that become non-
relativistic before equality travel a distance of order the

Last-scattering distance (Mpc/h)
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Each mass state has a 
different LSS distance

Dipole for lowest m 
could be affected by 
gravitational lensing

And thick, because of 
momentum distribution

Dodelson & Verterinen (2009)
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