

Using evidence to make decisions

Charles Jenkins, Energy Division, CSIRO Black Mountain charles.jenkins@csiro.au

www.csiro.au

Jasper's view

• From Wall & Jenkins, page 1, line 1

Science is about decision. Building instruments, collecting data, reducing data, compiling catalogues, classifying, doing theory – all of these are tools, techniques or aspects which are necessary. But we are not doing science unless we are deciding something; only *decision counts*. Is this hypothesis or theory correct? If not, why not? Are these data self-consistent or consistent with other data? Adequate to answer the question posed? What further experiments do they suggest?

Evidence, Bayes factor and decisions

If we have two exclusive models H0 and H1, then the Bayes factor links the prior and posterior odds

posterior odds = Bayes factor x prior odds

The Bayes factor **B** depends on the average likelihood over the priors:

prob(data|H1) prob(model parameters|H1)

prob(data|H0) prob(model parameters|H0)

Making choices

Because it gives the odds, the Bayes factor (or generalizations of the idea to more than two competing models) is very attractive in dealing with real-world questions of the type

"What are these data telling me to do next?"

...and it is natural to ask, what are compelling odds?

Strength of evidence ideas

a statistical model, as opposed to another. Jeffreys (1961, app. B) suggested interpreting B_{10} in half-units on the \log_{10} scale. Pooling two of his categories together for simplification, we have:

$\log_{10}(B_{10})$	B_{10}	Evidence against H_0
0 to 1/2	1 to 3.2	Not worth more than a bare mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
>2	>100	Decisive

From Kass & Raftery 1995

A simple example

- Some fairly low SNR spectroscopic data with just one line
- We ask, is this line Gaussian? Or is it Lorentzian (power-law wings)?
- We imagine we are actually going to act on the conclusion we draw; we will not just write down the posterior odds on the Lorentzian, but we will then do something based on how good those odds are.
- Is it good enough to have strong evidence? Decisive evidence? If the risks of not acting were high enough, might we act on evidence "not worth more than a bare mention"?

An example simulation

Spread in the odds on...

The line profile is actually Lorentzian; the Bayes factor is in the sense Lorentzian/Gaussian.

...and odds against

The line profile is actually Gaussian; the Bayes factor is again in the sense Lorentzian/Gaussian.

CSIR

A general result

- We see that the Bayes factor has a large spread upon repeated realizations of the data.
- Various simulations, and some analytical estimates, show that the log of the Bayes factor (the "weight of evidence") is ~ normally distributed
- If the mean of log B is μ then the standard deviation is $\alpha \sqrt{\mu}$
- α is typically 1 2 so this is a big effect.
- It turns out Turing knew this:

Biometrika (1979), 66, 2, pp, 393-6 Printed in Great Britain

Studies in the History of Probability and Statistics. XXXVII A. M. Turing's statistical work in World War II

By I. J. GOOD

Department of Statistics, Virginia Polytechnic Institute & State University, Blacksburg

SUMMARY

An account is given of A. M. Turing's unpublished contributions to statistics during 1941 or 1940.

Some key words: Bayes factors; Cryptology; Decibans; Diversity; Empirical Bayes; History of statistics; Information; Repeat rate; Sequential analysis; Weight of evidence; World War II.

7. The variance of weight of evidence

Also while evaluating Banburismus in advance, Turing considered a model in which the weight of evidence W in favour of the true hypothesis H had a normal distribution, say with mean μ and variance σ^2 . He found, under this assumption, (i) that if H is false W must again have a normal distribution with mean $-\mu$ and variance σ^2 , and (ii) that $\sigma^2 = 2\mu$ when natural bans are used; it follows that σ is about $3\sqrt{\mu}$ when decibans are used. This result was published by Birdsall (1955) in connection with radar, and was generalized by Good (1961) to the case where the distribution of W is only approximately normal. In radar applications the variance is disconcertingly large and the same was true of Banburismus.

What next?

- The posterior odds approach remains attractive, for all the familiar reasons of principle associated with the Bayesian approach.
- However, the wide spread may lead to bad decisions in yes/no applications: Good remarks that it is *"horrifying in relation to radar"* for example
- We will look at our toy example in two ways
 - The classical Neyman-Pearson approach, asking about the statistical power and false alarm rate, based on a threshold in the posterior odds
 - Via the Positive Predictive Value what's the chance that H1 is true given that I have observed the posterior odds to be over a certain threshold?
- Each of these might be useful approaches in different circumstances
- Assume prior odds are 1 for the examples

Neyman-Pearson and "ROC" diagram

Power: chance that the posterior odds exceed the threshold, given that a Lorentzian model applies. False alarm rate: chance that the posterior odds exceed the threshold, given that a Lorentzian model does *not* apply (and hence the Gaussian model must apply).

Positive Predictive Value

PPV: the chance that the Lorenzian model is right if we record a Bayes factor above the given threshold. Dashed line: prior odds are 10:1 for a Gaussian

Values

- In the background of any discussion about decisions is the question of the "loss function" – what is the payoff for getting it right? – what is the penalty for getting it wrong?
- Good's remark "horrifying in respect to radar" illustrates the point. If we shoot down everything that we see in our airspace we have 100% success rate against the enemy. Isn't that what we want?
- Final example: the expected gain/loss, computed from the PPV for various cases.

Adding some benefit

The curves are indexed with the ratio |gain/loss|: gain if you correctly pick the Lorenztian, loss if you pick it wrongly

Assessment

- The random spread in log B will extend across all these categories
- Decisive evidence is actually very cautious in a Neyman-Pearson sense

a statistical model, as opposed to another. Jettreys (1961, app. B) suggested interpreting B_{10} in half-units on the \log_{10} scale. Pooling two of his categories together for simplification, we have:

$\log_{10}(B_{10})$	B_{10}	Evidence against H_0
0 to 1/2	1 to 3.2	Not worth more than a bare mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
>2	>100	Decisive

- Viewed through the PPV lens, the categories are discriminatory if the prior odds on H1 are small – also a kind of caution
- This is also true if the penalty for wrongly rejecting H0 is considerable – a similar kind of caution
- From this perspective the Bayes factor seems to have a connection with the classical p-value (rejecting the null) as discussed most recently by Johnson (PNAS November 2013)

Conclusions

- The posterior odds, or equivalently the Bayes factor or weight of evidence, is an attractive method for taking principled decisions
- However, these quantities have *considerable* scatter under repeated realizations of the data
- This focuses attention on the chances of taking the wrong decision...
- ...but the weight to attach to this, and hence the weight of evidence required, is a question of values, not probability

