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ABSTRACT. If uncorrected, the Coriolis force due to the rotation of the Earth causes significant aberration
of images produced by large liquid-mirror telescopes. We show that this problem can be eliminated by a fixed
compensating tilt of the liquid-mirror rotation axis. The required tilt angle, which is a function of latitude and
the mirror rotation rate, is on the order of 10� for current telescopes. This result removes the last fundamental
obstacle to achieving diffraction-limited performance with large liquid mirrors.

1. INTRODUCTION

Liquid-mirror telescopes employ a rotating primary mirror
surfaced with a metallic liquid, usually mercury, to reflect and
focus light (Borra 1982; Hickson et al. 1994; Potter & Mul-
rooney 1997). Laboratory tests and astronomical observations
(Borra et al. 1992; Hickson & Mulrooney 1998; P. Hickson &
M. L. Mulrooney 2001, in preparation) indicate that liquid
mirrors can provide an optical surface that is parabolic to within
a fraction of a wave and provide astronomical-quality images.
Current liquid-mirror telescopes are zenith pointing; however,
their comparatively low cost makes them competitive with con-
ventional telescopes for many types of observations such as
wide-angle surveys.

Departures from the ideal parabolic shape, due to various
influences such as gravitational nonuniformity and lunar tides,
have been analyzed by Gibson & Hickson (1992) and Mul-
rooney (2000). These authors found that these influences have
a negligible effect on the images produced by liquid-mirror
telescopes with the exception of the Coriolis force, which re-
sults from the Earth’s rotation. They found that, for an ideal
inviscid fluid, the Coriolis effect introduces astigmatism and
coma that result in an image spread that could be as large as
∼1�.7 for a 2.7 m f/1.5 telescope to∼6�.7 for a 10 m f/1.5
telescope. This is clearly a very significant effect, potentially
being larger even than the atmospheric seeing.

While the Coriolis aberrations might, in principle, be re-
movable by a suitably designed optical corrector, the exact
correction required is difficult to determine because of hydro-
dynamic and viscous effects in the fluid layer that covers the
mirror. The presence of any nonaxisymmetric force will cause
a periodic time-dependent flow of the fluid. In addition to
greatly complicating the modeling of the system, such a flow
will result in print-through of any imperfections in the surface
of the structure that supports the fluid layer, making complete
correction of the images very difficult.

In this paper it is shown that the Coriolis effect can, in fact,

be eliminated by means of a tilt of the rotation axis of
the mirror. When this is done, there are no significant time-
dependent forces in the rotating frame of the mirror, and the
fluid surface is static. Because there is no fluid flow, there are
no hydrodynamic effects, and the mirror’s surface is a parab-
oloid to within a small fraction of the wavelength of light.

2. ELIMINATING THE CORIOLIS EFFECT

In the analysis that follows, we assume that sufficient time
has elapsed from the start of rotation to allow the fluid to come
to equilibrium. It is then sufficient to consider only inertial and
gravitational forces; other effects such as surface tension have
been shown by direct laboratory tests (Borra et al. 1992) to
have a negligible effect on the shape of the surface. We will
justify the assumption of equilibrium by showing that, when
the mirror rotation axis is chosen appropriately, there are no
significant time-dependent forces acting on the fluid that would
cause a departure from equilibrium.

Consider a liquid-mirror telescope located at latitudel. The
axis and rate of rotation of the liquid mirror are defined by the
angular velocity vector . In the rotating frame of the Earth,Q0

the instantaneous velocity of an element of fluid is given by

v p Q � r, (1)00

wherer is the vector extending from the vertex of the mirror
(the point where the rotation axis intersects the surface of the
fluid) to the fluid element.

Now consider an inertial frame moving, but not rotating,
with the Earth. We can ignore the small acceleration due to
the Earth’s motion around the Sun. The resulting centrifugal
force is balanced by the Sun’s gravitational attraction, and it
has already been shown that the tidal force of the Moon, and
therefore the smaller tidal force of the Sun, is unimportant
(Gibson & Hickson 1992). In the inertial frame, the fluid is
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Fig. 1.—Geometry of angular velocity and acceleration vectors. The circle
represents the Earth, rotating about the north-south axis with angular velocity

. The vertex of the liquid mirror is located at the intersection of the circleQ�

and the straight line extending to the zenithZ. In the rotating frame of the
Earth, the mirror rotates about axis , but in an inertial frame it rotates aboutQ0

the resultant axis . To eliminate the Coriolis effect, this axis must be parallelQe

to the effective gravitational accelerationge.

also rotating about the Earth’s axis with velocity

v p Q � (R � r), (2)� �

where is the angular velocity vector of the rotating EarthQ�

and is the vector extending from the center of the Earth toR�

the vertex of the mirror. The velocity of the fluid element in
the inertial frame is thus

v p v � ve 0

p Q � r � Q � R , (3)e � �

where

Q p Q � Q (4)e 0 �

is the effective angular velocity vector.
Equation (3) shows that the effect of the Earth’s rotation is

twofold. First, the effective axis and rate of rotation is changed
to , the vector sum of and . Second, an accelerationQ Q Qe 0 �

V
a p dC dt

p Q � (Q � R ) (5)� � �

occurs, directed inward toward the Earth’s axis, with magnitude

2a p R Q cosl. (6)C � �

Consider now the gravitational force acting on the fluid. The
gravitational acceleration is

GM�g p � (R � r)�3F FR � r�

p g � g , (7)0 T

where

GM�g p � R (8)0 �R 3�

is the gravitational acceleration at the mirror’s vertex and

GM�g p � (R � r) � g (9)T � 03F FR � r�

is a small tidal term representing the differential acceleration
across the mirror due to the gradient and divergence of the
gravitational field.

The total centripetal acceleration of the fluid element must
equal the gravitational acceleration, which is the only signifi-

cant external force on the fluid. Therefore,

Q � (Q � r) � a p g � g . (10)e e C 0 T

Ignoring for the moment the small tidal termgT, to which
we shall return later, it is now evident that if the total angular
velocity vector e is parallel to the effective gravitational ac-Q

celeration , the force acting on the fluid will beg p g � ae 0 C

symmetric about the axis defined bye. To see this, observeQ

that, when the fluid is in equilibrium, the radiusr of any fluid
element is constant, so the centripetal accelerationQ �e

has constant magnitude and is directed toward the(Q � r)e

rotation axis. By definition, the effective gravitational accel-
erationge acts along the rotation axis, so the fluid element feels
only constant radial and axial forces and no azimuthal forces.
Because these forces are constant, there will be no further flow
of the fluid once it has reached equilibrium and therefore no
hydrodynamic effects. The required geometrical condition is
illustrated in Figure 1. Since we are free to choose the orien-
tation of the mirror rotation axis, it is always possible to achieve
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this condition.This shows that the Coriolis effect can be elim-
inated by tilting the mirror rotation axis in order to make the
effective angular velocity vector parallel to the effec-Q � Q0 �

tive acceleration vector .g � a0 C

Referring to Figure 1, we see that the required tilt angle,
with respect to the zenith, is , wheree p a � b

g · ge 0
a p

g ge 0

2 2Q R sin l� �≈ (11)
2g0

and

Q · Qe 0
b p

Q Qe 0

Q cosl�≈ . (12)
Q0

In practice, liquid mirrors are leveled using a precise bubble
level that is, of course, sensitive to the effective vertical di-
rection defined byge, not the true vertical. In this case, the
required tilt angle is justb. From Figure 1 it is evident that
the required axis tilt is in the north-south direction and toward
the equator if the mirror rotates in the same sense as the Earth
(counterclockwise in the Northern Hemisphere and clockwise
in the Southern Hemisphere) and away from the equator
otherwise.

Now, s�1, m,�5 6Q ≈ 7.29# 10 R ≈ 6.38# 10 g ≈ 9.81� � 0

m s�2, and , whereF is the telescope focal length.2Q ≈ (g /2F)0 0

Substituting these quantities into equations (11) and (12) gives

�3 2a ≈ 1.73# 10 sin l, (13)

�5 1/2b ≈ 3.29# 10 F cosl, (14)

whereF is measured in meters.

3. THE EQUILIBRIUM SURFACE AND THE EFFECT
OF THE TIDAL FIELD

Let us now assume that the Coriolis-canceling condition de-
scribed in the previous section is satisfied. What is the shape
of the mirror’s surface? To calculate this, it is convenient to
use cylindrical coordinates (r, f, z) with thez-axis aligned with
the effective rotation axisQe and the origin at the vertex of the
mirror. The orientation is chosen so thatz increases in the
outward direction (i.e., away from the Earth) and is thef p 0
north direction.

Rather than work with the vector equation (10), we introduce
the scalar potentialF, whose gradient is the acceleration. The

total potential of a fluid element is then

1 2 2F p � Q r � g z � F . (15)e e T2

In this equation, the first term on the right-hand side is the
centrifugal potential arising from rotation about the axis , theQe

second term represents the effective gravitational acceleration,
and the third term is the potential corresponding to the tidal
term gT. The zero point of the potential is arbitrary because
any constant can be added without affecting the acceleration.
We have chosen at the mirror vertex .F p 0 (r p mz p 0)

In equilibrium, the surface of a liquid has constant potential,
so equation (15) gives the surface shape directly,

2Q 1e 2z p r � F , (16)T2g ge e

which is a paraboloid of focal length

�11 dz geF p p , (17)( )2 24 dr 2Qe

with a small correction due to the tidal term. The quantitiesQe

and ge, the effective angular velocity and gravitational accel-
eration, respectively, can be determined by applying the cosine
rule to the geometry of Figure 1 and using equation (6). The
result is

2 2 1/2Q p [Q � Q � 2Q Q sin (l � e)] , (18)e 0 � 0 �

2 4 2 2 2 1/2g p [g � (Q R � 2g Q R ) cos l] . (19)e 0 � � 0 � �

Let us now determine the effect of the tidal term. Equation
(9) shows that the tidal term represents the difference between
the actual gravitational acceleration and a hypothetical uniform
gravitational acceleration equal to the value at the mirror vertex.
However, because of the Earth’s rotation, the effective axis of
rotation of the mirror does not pass through the center of the
Earth but is instead tilted from the vertical. Thus, there is a tilt
between our cylindrical coordinate system and a geocentric
system. To first order in the tilt anglea, the tidal potential is
therefore

GM GM GM� � �
F p � � (z � ar cosf) � , (20)T 2F FR � r R R� � �

where the last term is a constant chosen to make atF p 0T

the mirror vertex. To first order ina, we have

2 2 1/2F FR � r p [(R � z � ar cosf) � r ] . (21)� �

Using equation (21), the first term on the right-hand side of
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equation (20) can be expanded in a power series in andr/R�

, and z can be eliminated by substituting equation (16).z/R�

From equation (16), dividing this result by�ge then gives the
resulting surface deformationzT. To fourth order inr and first
order ina, the result is

2 2 4g r R R r0 � �z p � 6 � 6 �T ( )2 3[g 2R F F 16Re � �

3R ar cosf�� 3 � . (22)( ) 2 ]F 2R�

The first two terms in this equation are already known and
correspond to a small shift in focal length and a small amount
of spherical aberration. The new focal length (from eqs. [17],
[16], and [22]) is

�12F
F p F 1 � . (23)e ( )R�

The maximum amplitude of the second term is approximately
, whereD is the diameter of the mirror. For a 10 m4 2D /256F R�

f/2.5 mirror, it is 10�7 m. At a wavelength of 1mm, this cor-
responds to one-fifth of a wave of spherical aberration, which
can easily be corrected optically if necessary.

The third term is a very small comatic distortion that arises
from the misalignment of the tidal field with the effective ro-
tation axis. The maximum amplitude of this term is

. For a 10 m f/2.5 mirror located at 30� latitude, it3aD /16FR�

has the value m, which is less than one-thousandth�106.8# 10
of a wave. Even for a 100 m telescope, the maximum error is
less than one-tenth of a wave. It follows that this term can be
safely ignored for all liquid-mirror telescopes currently
conceivable.

4. DISCUSSION

Until now, the Coriolis effect was considered to be a po-
tentially significant problem for large liquid-mirror telescopes.
While viscous effects might reduce the surface distortion to
some degree, the predicted effect is so large for 10 m class
mirrors that it was a cause of concern.

In this paper we have shown that the Coriolis effect can in
fact be eliminated by a fixed compensating tilt of the axis of
rotation of the liquid mirror. A small residual tidal effect was
shown to be of no significance to all present and foreseen liquid-
mirror telescopes. This result removes the last fundamental
obstacle to achieving diffraction-limited performance with
large liquid mirrors.

In order to eliminate the Coriolis effect, the axis of rotation
of the mirror must be tilted from the effective vertical (defined
by a pendulum or bubble level) by the angleb given by equa-
tions (12) and (14). For the 3 m f/1.5 mirror of the NASA
Orbital Debris Observatory (Potter & Mulrooney 1997), which
rotates counterclockwise, the required shift is to the south by
an angle of 12�.1. Axis tilts of this magnitude have been made
with this telescope in order to investigate the effects on the
image (Mulrooney 2000), but the effects were smaller than the
atmospheric seeing and could not be adequately assessed. For
the 6 m f/1.5 mirror of the Large Zenith Telescope (Hickson
et al. 1998), the tilt required is 13�.1. The larger mirror diameter
and better image sampling should allow us to verify the tech-
nique using this telescope.
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