

Outline

- LAMA concept
- Technologies
- Feasibility

Cost scaling of conventional telescopes

graph courtesy FELT project

Advantages of an array

- Demonstrated technology
- Versatility
- Redundancy
- Cost
 - monolithic ~ A^{1.3}
 - array ~ A
 - smaller enclosure
 - economy of scale

EURO50

LAMA

Lama concept

- Array of fixed mirrors
- Central beam combiner
- Near-zenith pointing and tracking
- Adaptive optics on each telescope
- Incoherent and coherent (interferometric) modes
- Simultaneous
 VRIZJHK imaging camera
- Modular approach

Optical Interferometry

NPOI

- Demonstrated technology:
 - optical imagery
 - phase closure
 - pathlength control
 - adaptive optics
- Active development
 - NPOI
 - PTI
 - CHARA
 - KECK
 - VLTI

Fizeau interferometer

- Interferometric imaging over an extended field of view
- Geometry of beam combiner must exactly match that of mirror array

LAMA PSF

Coherent 6 mas FWHM at 2 um

LAMA Imaging HST 2.4m

LAMA 60m

Photo Credit:NASA

Interferometer sensitivity

 Fraction of power in central image equals the filling factor of the array

 $f = ND^2/d^2$

 Incoherent beam combination

 $S_I \sim ND^4$

- Coherent beam combination
 - $S_c \sim f^2 N D^2 d^2$ ~ $f N^2 D^4$

Modular Approach				
Equivalent Diameter				
D _A	D_{θ}			
17m	31m			
24m	35m			
42m	60m			
60m	85m			

Sensitivity compared to a 10m telescope S_I S_{c} 4.5 3 18 6

162

648

18

36

LAMA technologies

- Adaptive optics
- Optical interferometry
- Tracking optics
- Liquid mirrors

Adaptive optics

- Demonstrated performance
- FWHM = 0.8 arcsec

FWHM = 0.08 arcsec

Credit: Gemini Project

Adaptive optics performance

Schmidt-Telescope Principle

Parabolic primary mirror

- Add aspheric corrector A2, located conjugate to primary mirror M1
- A2 effectively converts the primary mirror to a spherical mirror
- A2 must move transversely, relative to the tracking system, in order to remain conjugate to M1. This does not introduce any distortion or focal plane tilt because A2 has no optical power
- With A2, the system performs like the spherical case, but with a zenith-angle limited by vignetting

Performance of LAMA tracking system

- Points and tracks over an 8-degree diameter area of sky
- Tracking for up to 30 min per field
- All-reflecting design wide wavelength range
- Feeds light to a fixed focus
- Sub-arcsec natural images
- High Strehl ratio using AO

Zenith angle (deg)	0	1	2	3	4
Field angle (arcmin)	Strehl Ratio				
+0.5	0.89	0.91	0.86	0.60	0.33
0	0.95	0.94	0.90	0.80	0.80
-0.5	0.89	0.91	0.85	0.68	0.33

Liquid-mirror issues

- Feasibility
- Performance
- Safety
- Cost

Liquid mirror telescopes A century of progress...

NASA Orbital Debris Observatory

- New Mexico Sacramento Mtns
- 2772 m altitude
- 50 km North of Sunspot (home of National Solar Observatory, ARC 3 m and Sloan DSS)
- 75% nights clear, 30% photometric
- Seeing 1-2" FWHM

NASA Orbital Debris Observatory (NODO)

- Near Cloudcroft, New Mexico, USA
- First-light 1995
- 3m f/1.5 primary
- 4-element PF corrector
- NASA Intensified video camera
- UBC 1k x 1k thinned CCD camera

Credit: Chip Simons Photography

NODO 3m mirror

Credit: Mark Mulrooney

NASA 3m prime focus

Original system

New system with 2Kx2K CCD

Credit: Mark Mulrooney

Primary NODO mission - space debris

- Detect and characterize the 1-10cm dia debris population in low Earth orbit
- Intensified digital video CCD camera
- Has detected several thousand objects

Credit: Mark Mulrooney

Time-Delay Integration

- I mage moves continuously across CCD due to Earth's rotation
- Charge being generated by photons is shifted electronically along the CCD columns at the same rate
- Data are read continuously all night long, at approximately 13 lines per second
- Integration time is the time taken for an image to cross the CCD (78 sec for the 1Kx1K)

LMT imaging with NODO

1-2 arcsec seeing

120 photometric nights/year

22 magnitude in 78 sec

NODO Survey

- Driftscan survey using 1K x 1K CCD
- BVRI + 35 medium band filters
- 12-18 hrs ra at +33 deg dec
- 20-22 magnitude limit
- ~3 million objects

L M т i m a g n g

NODO survey: emission-line galaxies

NODO survey: early-type galaxies, z~0.2

Credit: Remi Cabanac

LMT proper motion survey

- Study local halo-disk populations and search for old halo white dwarfs (dark matter candidate)
- NODO R band blinked against Gen 1 POSS
- 50-year baseline
- 20 sq degrees to 20 mag
- Pm limit ~ 40 mas/yr
- 1104 high-proper-motion stars found (from only 1 night of LMT data)
- BVRI and Multiband data
- 2MASS identifications for 804 stars

1334+3303 photometry and spectral energy distribution

Spectral type ~ M8

Large Zenith Telescope

- SW British
 Columbia (Canada)
- 400 m altitude
- 6-m LMT

www.astro.ubc.ca/Imt/Izt

LZT primary mirror concept

6m Primary Mirror Truss

LZT air bearing

- Designed specifically for large LMTs
- 2-year development
- Up to 10m capacity

LZT Air System

LZT telescope structure

LZT enclosure

Liquid-Mirror Performance

- Strehl Ratio
 S = central intensity/ideal central intensity
- S = 0.81 measured in lab tests of 2.5m LM

- S ~ 0.5-0.7 estimated for NODO 3m telescope
- S ~ exp(-k² $\sigma^{2}/2$) k = 2 π/λ σ = RMS OPD error

Credit: Ermanno Borra

Liquid – Mirror Optical Testing

Credit: Ermanno Borra

Liquid-Mirror Surface Quality

- 85 nm RMS error
- S = 0.93 at
 λ = 2 um

Credit: Ermanno Borra

Characterizing Wavefront Structure

Phase distortion

$$\boldsymbol{j} \equiv \Delta \boldsymbol{f} = \frac{4\boldsymbol{p}}{l} \Delta \boldsymbol{z}$$

- Phase covariance function $B_{j}(\mathbf{r}) = \langle \mathbf{j}(\mathbf{r}')\mathbf{j}(\mathbf{r}'+\mathbf{r}) \rangle$
- Phase structure function $D_{j}(\mathbf{r}) = \left\langle \left[\mathbf{j}(\mathbf{r}') - \mathbf{j}(\mathbf{r}' + \mathbf{r}) \right]^{2} \right\rangle$ $= 2 \left[B(0) - B(\mathbf{r}) \right]$
- Phase variance

$$\mathbf{s}_{j}^{2} \equiv \mathbf{B}_{j}(0) = \langle \mathbf{j} (\mathbf{r}')\mathbf{j} (\mathbf{r}') \rangle$$

NODO image analysis

- Measure point spread function (PSF) from star images
- Fourier transform of PSF gives the modulation transfer function (MTF)
- Log of MTF gives the phase structure function

$$D_{j}(\mathbf{r}) = \left\langle \left[\mathbf{j}(\mathbf{r}') - \mathbf{j}(\mathbf{r}' + \mathbf{r}) \right]^{2} \right\rangle$$

- Subtract atmospheric and diffraction contributions
- This gives the autocorrelation function of mirror surface errors

Characterizing image quality

 $\boldsymbol{r}(\boldsymbol{q}) \equiv I(\boldsymbol{q}) / I(0)$

Modulation Transfer Function (MTF)

$$\boldsymbol{t}(r) = 2\boldsymbol{p}\int_{0}^{\infty} \boldsymbol{r}(\boldsymbol{q}) J_{0}(2\boldsymbol{p}\boldsymbol{q}\,r/\boldsymbol{l}) \boldsymbol{q}\,d\boldsymbol{q}$$

• MTF related to structure function

$$\boldsymbol{t}(r) = \exp\left\{-\frac{1}{2}\mathsf{D}(r)\right\}$$

Atmospheric structure function

• Kolmogorov turbulence

$$D(r) = 6.88 (r / r_0)^{5/3}$$
$$r_0 \propto I^{6/5}$$

• Width of PSF core

$$FWHM \equiv 2\boldsymbol{q}_{1/2} \approx \boldsymbol{l} / r_0$$

• Typically,
$$r_0 \approx 0.1 \,\mathrm{m}$$
 at $l = 0.5 \,\mathrm{um}$

NODO PSF

NODO Structure Function

NODO R-band Structure Function 2001/05/30

NODO mirror surface analysis

- RMS wave amplitude:
 46 nm (5 kt wind)
 73 nm (15 kt wind)
- Characteristic scale:
 1.1 cm
- Mercury thickness:
 1.6 mm

Strehl ratio (no atmosphere)

Wavelength	Streh	l ratio	
(um)	5 kts	15 kts	
0.50	0.313	0.185	
0.65	0.670	0.368	
0.85	0.791	0.559	
1.00	0.845	0.657	
1.25	0.897	0.764	
1.60	0.936	0.848	
2.00	0.959	0.900	

Primary mirror costs

Approximate costs of possible technologies

Technology	Unit cost (K\$ /m²)	Cost for 1400 m ²
Gemini meniscus mirror	400	560 M\$
Segmented mirrors	100	140 M\$
Liquid mirrors	5	7 M\$

Summary

- A multi-aperture telescope makes sense
- The technology exists now
- Pointing and tracking are possible with fixed primary mirrors
- Liquid mirrors are a viable alternative to glass mirrors, at about 5% of the cost.

