

Large Astronomical Mercury-Mirror Array

Paul Hickson Ken Lanzetta Rick Puetter Gene Sprouse Amos Yahil University of British Columbia SUNY Stony Brook UC San Diego SUNY Stony Brook SUNY Stony Brook

Very Large Optical Telescope Concepts

- "Continued progress in optical astronomy requires a telescope of aperture and resolution significantly larger than that of present instruments" – Next Generation CFHT Committee
- Aperture in the range 30-100 meters is needed

Major Optical Telescope Projects/Proposals

Project	Aperture	Cost	First Light
NGST	8 m (space)	~ 800 M\$	2007
CELT	~ 30 m	~ 600 M\$	2010?
MAXAT	~ 50 m	~ 1000 M\$	2012?
OWL	~ 100 m	> 1000 M\$	2015+

Primary Science Goals

- Detect and study the first luminous systems
- Study the process of galaxy formation and evolution from redshift z ~ 20 to the present
- Determine the star formation history of the Universe
- Determine the cosmological parameters
- Resolve the innermost regions of AGN and QSOs
- Detect and study the oldest and faintest stars

Finding The First Galaxies

- Wavelength range 0.4 < ? < 2.5 um
- Lyman-a visible to z = 19.6

Distant Galaxy in the Hubble Deep Field PRC96-24a • ST ScI OPO • June 26, 1996 • K. Lanzetta (SUNY Stony Brook) and NASA

HST • WFPC2

Credit: NGST

Importance of Resolution

HST 2.4m

LAMA 60m

Photo Credit:NASA

Credit: NGST

Star-Formation History of the Universe?

PRC96-37b · ST Scl OPO · December 12, 1996 · P. Madau (ST Scl) and NASA

Supernova Detection

Object Counts (per square arcmin)

Flux (nJy)	10 (K _{AB} = 28.9)	1 ($K_{AB} = 31.4$)
Galaxies	781	2628
z < 5	708	1757
5 < z < 10	67	778
z > 10	2	20
Lyman-a emitters (R = 100)	57	
z < 5	51	
5 < z < 10	5	
z > 10	0.3	
Supernovae II per year	0.5	1
Active Galactic Nuclei	78	
z < 5	74	
5 < z < 10	4	
z > 10	0.4	
Strong Gravitational lenses	3	17

Performance Goals

- 0.4 2.5 um wavelength range
- < 0.1 nJy detection limit for point sources
- <1 nJy detection limit for galaxies</p>
- Milliarcsec resolution
- ~ 100 square arcmin survey area:
 - > 10⁵ galaxies
 - ~ 100 supernovae per year

Emerging Technologies

- Adaptive Optics
- Optical interferometry
- Large mercury mirrors
- Near-zenith tracking optics
- OH absorption cell
- Large VIS/NIR arrays

Adaptive Optics

FWHM = 0.08 arcsec

Adaptive Optics Performance

Optical Interferometry

NPOI

Optical Interferometry

- Frontier technology
- Phase closure with independent telescopes has been demonstrated
- Prototype arrays: I2T, MkIII, IRMA
- Operational arrays: PTI, IOTA, NPOI, ISI, GI2T, SUSI
- Upcoming arrays: COAST, VLTI, Keck
- Phase errors within individual apertures are corrected with adaptive optics
- Moving mirrors remove zero-point (piston) phase differences
- Phase tracking on light from natural guide star
- LBT design gives interferometric imaging over 40 arcsec

LBT Imaging Interferometer

- 2 x 8.4 m interferometer
- 22.8 m baseline
- f/15 phase-combined beam
- Laser guide-star AO on individual telescopes
- Phase tracking on natural guide star
- 40 arcsec FOV
- 5 mas resolution in optical
- 80-96% Strehl ratio in interferometric image

Liquid-Mirror Telescopes

- Three 3m telescopes in operation
- A 6m nearing completion
- A 4m project in Chile

Liquid-Mirror Technology

- Strehl Ratio
 S = central intensity/ideal central intensity
- S = 0.81 measured in lab tests of 2.5m LM

- S ~ 0.5-0.7 estimated for NODO 3m telescope
- S ~ $exp(-k^2\sigma^2)$ k = $2\pi/\lambda$ σ = RMS OPD error

I mages courtesy of Dr. E. Borra, Universite Laval

LAMA

Liquid-Mirror Interferometric Testing

I mage courtesy of Dr. E. Borra, Universite Laval

Liquid-Mirror Surface Quality

• 85 nm RMS error \Rightarrow S = 0.93 at λ = 2 um

I mage courtesy of Dr. E. Borra, Universite Laval

Credit: Dr. E. Borra, Universite Laval

Mercury Telescopes

NODO

Photo credit: Mark K. Mulrooney

LMT Imaging

Arp 270

LMT I maging

Field Galaxies

LMT Imaging

Distant Cluster

LMT Imaging

Cluster Core

Large Zenith Telescope

6m Primary Mirror Truss

LZT Mirror Truss

Making the mirror-segment mold

LZT Air Bearing

LMT Tracking Optics

Preliminary Design (Single element)

- M1: 10 m f/1.5 parabolic
- M2: 0.75 m hyperbolic
- M3: 0.2 m flat
- 2 compensation lenses
- 5 min tracking
- RMS spot dia < 150 mas</p>
- Strehl ratio > 0.1 @ 2 um

Background Light

Credit: Space Telescope Science Institute

OH Absorption Cell

- NIR sensitivity is directly proportional to background
- Gain of ~ 100 is possible
- OH Production: $O_3 + H \rightarrow OH + O_2$
- Radiative excitation by Meinel photons
- Collisional dexcitation in ~100 us
- Column density > 10¹⁸ cm⁻²
- Path length ~ 10 m
- Pressure ~ 0.1 Torr
- Lifetime ~ 10 ms
- Gas consumption ~ 2 kg/hr O₃, 40 g/hr H

OH Absorption vs Column Density

Cerro Chanjnantor

- 5000 m high desert in Northern Chile
- Site of ALMA millimeter array
- Proposed site of Cornell IR telescope and several others

Chajnantor Seeing vs Paranal (ESO VLT)

Credit: Cornell University

LAMA Concept

- Optical-NIR interferometer
- Near-zenith pointing and tracking
- Survey fields around natural guide stars
- Wavefront control on each element (AO)
- Phase tracking on all beams
- Diffraction limit of 60m telescope
- Equivalent area of 42m telescope
- Fully sample isoplanatic area
- Background reduction by gas-phase OH absorption cells
- 0.1 nJ point source sensitivity (AB = 33.9)
- Mercury primary mirrors
- High dry site (eg. Alto-Plano)
- Low project cost (~ \$50M)

Array Geometry

Array Transfer Function

Single-Element PSF

LAMA PSF

Conceptual Design

10m Array Element

Survey Mode

- ~ 360 survey fields, each 30 x 30 arcsec
- ~ 150 observations per year for each field

Û

90 square arcmin in one year

~ 40,000 sec integration time

$\hat{\Gamma}$

100 pJy detection limit for galaxies (0.1")10 pJy detection limit for point sources

Summary

- A Very-Large Optical Telescope is feasible now
- A 60 m optical interferometer would provide unprecedented sensitivity and resolution
- Gains of an order of magnitude or more over NGST are possible for survey-type observations
- Liquid-Mirrors provide a way to beat the cost curve by a factor of 10-50
- Such a telescope could be built on a relatively short timescale (~ 6 yrs)

