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Exoplanet detection

» This 1s a subject that had a long history, full of 'what
turned out to be incorrect' claims.

* It 1s technically very challenging to detect planets
around other stars.

Three main techniques currently
1) Radial velocity (spectral) method on parent star

2) Transit method

3) Direct imaging method

There are also some known via other techniques
4) Pulsar timing

5) Gravitational microlensing



Absorption Lines in Stellar Binaries

* Unresolved stellar binary star systems are studied by
using the shifting stellar lines 1n a spectrum. One gets

the radial component of v by observing AA

* Doppler effect gives v=c (AA/A) , v 1s velocity away

two Etars orbiing their centre of mass
dh
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The Doppler effect allows the
measurement of the radial velocity
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negaive

e Here an example where you see spectral lines from both stars
e They usually have different amplitudes (b/c different masses)
 Note radial v in this plot above is relative to that of the center of mass
e (that is, the long term average of both signals)
* (center of mass could be moving towards or away from
observer)



The shape of the RV curve 1s a sine wave for circular orbits, but distorts for
elliptical orbits

b Circular orbit
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Allows measurement of orbital 'e' (same for both stars) and
orientation of periastron relative to the observer's line of sight



Exoplanetary RV detection

Unlike a stellar binary, the exoplanet member of
the 'binary' emits negligible light.

Thus the entire system's signal consists of a
spectrum with a single absorption line that varies.

The repeating nature of this pattern tells you
something 1s tugging on the star.

The repeating time signal of stellar wavelength
then lets one measure the radial component of the
stellar velocity (K, see next slide)



Star's velocity amplitude K due to
the presence of unseen planet

2rG\'°?  Mjsini 1
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If the planet's mass is small, then measurement of stellar velocity amplitude
K, orbital period, and eccentricity (from shape of RV curve) gives, if the
star's mass can be estimated from its spectrum: Mp Sin I

There is an uncertainty due to the unknown projection effect to the radial
direction (line of sight to the system).



The effect of inclination

The Doppler effect only sees the component of radial velocity of
'away or towards' the observer

So, i measures inclination angle of the orbital plane from the
'plane of the sky'. An edge-on orbit has ;=90 degrees.

If i=0, all motion 1n plane of sky, and Doppler effect goes away

relative orbit
plane tangent to

celestial sphere
(plane of apparent orbit)




observer

only MEASURE Vsini of star



Can derive : Kepler's 3" law for velocity components:

For exoplanet B, m <<m, and V <<V _ (center of mass relations)
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Mass ambiguity
So one only measures (m, +m ) sin’ [ = f

So the total system mass 1s

f

my+mg=———=f
sin’ i

And thus one obtains a lower [imit to the mass,
needed to produce the observed radial velocity

If the system 1s more inclined, then to maintain the
same observed radial velocities, 1t has to have
more mass, so that the speeds rise to keep the line-
of-sight radial component the same



Stellar radial velocity method

 Assume there is a Jupiter-mass planet (10~ the mass of
the Sun) 1n an orbit around a 1-solar mass star, with
orbital a=4 au.

* Assume we see the planet's orbit 'edge on' (i=90 deg)

* The start+planet is like a binary star, but we only see the
light from the star.

(a) How fast 1s the planet moving (km/s) 1n its orbit?

(b) How fast 1s the star moving (km/s) 1n its orbit
around the center of mass?
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Stellar radial velocity method

 Assume there is a Jupiter-mass planet (10~ the mass of
the Sun) 1n an orbit around a 1-solar mass star, with
orbital a=4 au.

o Vp = (30 km/s)/sqrt(a) and V_= (mp/ms) Vp
* Planet speed~15 km/s, star ~15 m/s

(c) What will be the period of the star's Doppler shift
pattern for its spectral lines?

(d) What will be the wavelength shift for a visible line
(say with rest' wavelength of 500 nm)?
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Stellar radial velocity method

 Assume there is a Jupiter-mass planet (10~ the mass of
the Sun) 1n an orbit around a 1-solar mass star, with
orbital =4 au. Planet speed~15 km/s, star ~15 m/s

(c) What will be the period of the star's Doppler shift
pattern for its spectral lines? Solar-mass star, so
P=a*? and thus P=8 yr

(d) What will be the wavelength shift for a visible line?

AL=1Y =(500nm) —2S

- =25x10 " nm~3x10""nm
C 3x10°m/s
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Stellar radial velocity method

 Assume there is a Jupiter-mass planet (10~ the mass of
the Sun) 1n an orbit around a 1-solar mass star, with
orbital =4 au. Planet speed~15 km/s, star ~15 m/s

(c) What will be the period of the star's Doppler shift
pattern for its spectral lines? Solar-mass star, so
P=a*? and thus P=8 yr

(d) What will be the wavelength shift for a visible line?

Ah=1~=(500nm) 15"3/5
C 3x10°ml/s

=25x 10" nm~3x10""nm

Well THAT looks hard...




Campbell & Walker: Hydrogen Fluoride cell:
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* Use a gas cell (HF) in
the beam to serve as a
reference to finely measur
the wavelength centers of
many spectral lines

Demonstrated radial velocity precision of 13 m s in 1980!
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Signal of jovian planets around other stars

Expected signal was thus :
— Stellar radial velocity ~10 m/s

— Need to, by luck or by doing a large number of target
stars, find one where planetary orbit 1s roughly edge
on

— Planetary periods (and thus period of stellar RV
cycle) of roughly 1-2 decades

 This is going to take a while. People started doing big
observational campaigns in the early 1990s, expecting
to work a long time before seeing the slow variations...
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The BIG surprise

article

Nature 378,355 - 359 (23 Novembqy 1995):H01:10.1038/378355a0

A Jupiter-mass companion to a solar-type star

MICHEL MAYOR & DIDIER QUELOZ

Geneva Observatory, 51 Chemin des Malliettes, CH-1280 Sauverny, Switzerland

The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic
variations in the star's radial velocity. The companion lies only about eight million kilometres from the star,
which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet
that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

Nature paper announcing the discovery of a planet orbiting 51 Pegasi
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The BIG surprise

article

Nature 378,355 - 359 (23 Novembgg 1995)80i:10.1038/378355a0

A Jupiter-mass companion to a solar-type star
MICHEL MAYOR & DIDIER QUELOZ

Geneva Observatory, 51 Chemin des Malliettes, CH-1290 Sauvemy, Switzeriand Orbital periOd 1s ~4 days !

The presence of a Jupiter-mass compypnd
variations in the star's radial velocity
which would be well inside the orbit 6T"¥I® : - : :
that has migrated to this location through orbital evolution, or from the radiative stnppmg uf a bruwn dwarl'

Nature paper announcing the discovery of a planet orbiting 51 Pegasi
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Discovery of the first exoplanets
Radial Velocity signal

EiN
i
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stellar motion caused E
by tug of planet -
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time (aavys) The péatt

starlight starlight
redshifted blueshifted

b A penodic Doppler shift in the spectrum of the star 5| Pegasi

shows the presence of a large planet with an orbital penod of

about 4 days. Dots are actual data poin

represent measurement uncertanty

a Doppler shifts allow us to detect the shght ts; bars through dots
a star caused by an orbrting planet

Data showing the periodic Doppler shift produced by the planetary companion to the star 51 Pegasi.

The orbital period of the planet is only ~ 4 days! So, it must be
orbiting very close to the star (by Kepler's third law).
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This was a big surprise

* There are jovian mass planets 1n orbits around
stars, but closer than the distance at which
Mercury orbits the Sun

* These objects are called 'hot Jupiters' because their
equilibrium temperatures will be high.

* Many (but not all) astronomers believe that these
planets formed further out away from the star (past
the snow line) but then migrated in to their current
position
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The first few RV systems
Whoa! 0.5-5 Jupiter-mass planets only 0.1 — 2.0 AU from their star.

: - , Our solar system
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HD 114762
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The first few RV systems
Whoa! 0.5-5 Jupiter-mass planets only 0.1 — 2.0 AU from their star.

: . , Our solar system
MERCURY VENUS EARTH MARS
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multiple
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The first few RV systems

Whoa! 0.5-5 Jupiter-mass planets only 0.1 — 2.0 AU from their star.

MERCURY VENUS

, Our solar system
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Rho Coronae Borealis
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Directly imaging planets

 Why doesn't one just take a picture??

» Perhaps it 1s angular separation. Ground based
telescopes have trouble separating object 1f they
are closer 1n angular separation than ~0.5”

— Suppose one was an astronomer on a planet in the Alpha
Centaur1 system, 1.3 pc from the Sun, looking back at the
Sun-Jupiter system.

— What is the angular separation of Jupiter when Jupiter 1s
as far away as possible (in an angular sense) from the

Sun? : About 4.



Directly imaging planets

* So, the problem 1s NOT angular separation, when 1t
comes to looking for planets within ~10 pc from the
Sun

* The problem 1s CONTRAST.

— One 1s looking for a faint object near a bright one
(the star).

— Analogy 1s to see a firefly near a streetlamp; the
light of the firefly is easy to see 1n the dark, but
hard when there 1s lots of nearby light

* There are several techniques used to block or cancel
out the light of the star (or at least greatly reduce the

scattered light/contamination).
28
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Reflected light

* What 1s the ratio of reflected optical light from Jupiter to
that of the Sun? Take A jup=0.5, R _jup=70,000 km,
a_jup=5.2 au

 This 1s a few parts 1n a billion.

Thermal planetary light

 What about the THERMAL planetary light?

* Turns out contrast 1s better 1n the IR, by several
orders of magnitude, so most direct imaging
projects use the near-infrared atmospheric
windows.
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4 planets
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Note :
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the image
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previous
slide

HR 8799 planetary system
: Motlon of three outer planets as measured
-over 10-year.period from HST archival data

and more recent ground-based

o telescoplc data
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190-yr
orbit .
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Exoplanets Data Explorer
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Exoplanets Data Explorer
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< C | @ exoplanets.org/plots
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The transit method

If an edge-on orbit results 1n the planet crossing in front
of the line of sight to the star, 1t simply blocks the star's
light from that portion of the surface.

The fractional drop 1n the star's arriving flux/luminosity
is just the fraction of the stellar disk blocked

2
AL _ nR, _ (R,
L J‘ERi RS
Usually the star's spectrum allows a decent estimate of

its radius, and thus measured AL / L gives Rp.

There are complexities related to stars having non-
uniform surface brightness (limb darkening)



You can see the dimming of the star

When planet passes in
front of the star, it blocks

;. - T some of the light of the
planct g star.
r

ET - light curve  (Just the geometrical

£ e fraction of the disk that

_='|-

:'E‘ p I it blocks, which can be
Time > around a percent).

Using points labeled at left,
(L, —L)/L,
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Transit Light Curves

Kepler 4b Kepler Sb Kepker 6b Kepler 7b Kepler 8b
| 4 [

3.2 days
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If it's a planet, it REPEATS
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Kepler-11 System _

One specific example:
B the Kepler-11 system

Solar System
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The Kepler-11 system (6 planets)
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Circumbinary Planets
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Transit Timin
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44 Days since transit minimum for a linear ephemeris
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Transit Timing Variations

star + two Flgur?: Agol et al. 2004

planets

- E .

v

early late on time

shift in location of center of mass
causes change in transit time
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How can we learn more about the
properties of these planets?

* What kind of things would we like to know about
the planets?

— Mass
— Radius

— Chemical composition

» Transits coupled with RV is the best, because
— Transit ==> edge on
— Thus sin(1)=1 and get planet mass
— Transit depth this planetary radius
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IF you can combine techniques

:
2

relalive brighness
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.
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n

- This is a rather
extreme outlier...
Density of iron!

There are also very low!
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Currently known estimated masses and
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Planet Mass [Jupiter Mass]



Currently known estimated masses and
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49 Very similar to the values for Earth, Uranus, Neptune, Saturn, Jupiter
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Rossiter-McLaughlin effect

b= -03 &= 30"

b= -035, A = 60°

Rodsal Velocity [m s™']
Radial velocity [m s7')
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Can even see absorption spectrum

of the planet's atmosphere!

- Wavelengih {nm)
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Planet radius ()
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Planet radius (Rg)
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