ASTR 407/507 Properties of Extrasolar planets

What kind of physical properties might be accessible?

- Obviously we would like to know things like
 - Mass
 - Radius
 - Chemical composition
 - Bulk
 - Upper atmosphere
 - Internal structure

IF you can combine RV and transit techniques

Currently known estimated masses and densities

Currently known estimated masses and densities

Very similar to the values for Earth, Uranus, Neptune, Saturn, Jupiter

5

Currently known estimated masses and densities

Very similar to the values for Earth, Uranus, Neptune, Saturn, Jupiter

6

Mass-radius relationships

• Extract the best measurement, and find (for $R_p < 1.5 R_E$) $\rho_P = 2.43 + 3.39 \left(\frac{R_P}{R_{\oplus}}\right) g \text{ cm}^{-3}.$

– Looks like expected self compression for silicate bodies

• For LARGER planets, a mass-radius relation is fit:

For exoplanets satisfying $1.5 \leq R_{\rm P}/R_{\oplus} < 4$, we calculate an empirical fit to their masses and radii, yielding:

Weiss and
Marcy (2013)
$$\frac{M_{\rm P}}{M_{\oplus}} = 2.69 \left(\frac{R_{\rm P}}{R_{\oplus}}\right)^{0.93}$$
(3)

with reduced $\chi^2 = 3.5$ and RMS=4.7 M_{\oplus} . We exclude Uranus and Neptune from this fit because they differ from the exoplanets in our sample. Most of the exoplanets in our sample have P < 50 days, and so we do not expect them to resemble Uranus and Neptune, which have orbital periods of tens of thousands of days.

• For even larger planets (Uranus/Neptune scale) the mass-radius relation become quadratic in R

How are M and R related to bulk compostion?

• Models of the mass versus radisu

Limited atmospheric composition available in transit spectroscopy

9

C (i) exoplanets.org/plots

~

Exoplanets Data Explorer Table Plots Send data reports to: datamaster@exoplanet

Directly imaged planets

- These are detected at great distances
 - Thus large orbital semimajor axes, with large orbital periods
- Too far away to have non-negligible chance of transiting star, and period would be decades or longer
 – Even orbital motion will require a long time to detect
- How can we get any information about the planet? We can measure only:
 - Separation from star
 - Since imaged, we can at least get the flux in the detection band, and sometimes others
 - No direct masses

Masses of imaged planets estimated via flux models of cooling planets

