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Planetary Interiors

• How do we determine a planet’s bulk structure?

• How do pressure and temperature vary inside a 
planet?

• How do planets lose heat?



• The mass M and bulk density <rof a planet are two of its 
most fundamental and useful characteristics

• These are easy to obtain if something (a satellite, artificial or 
natural) is in orbit round the planet, thanks to Isaac Newton . . .  
 n2 a3 = G(M+m) ~ GM

• This furnishes planetary mass M

•  The physical size (and thus volume) is usually acquired via 
direct optical measurement (for small bodies it may be a stellar 
occultation).

• Then <mass/volume ~ 3M/(4 pi R3)
• (If object non­spherical, use true 'volume' )

Planetary Mass

- If no satellite exists, then mass can still sometimes be obtained in a spacecraft 
flyby (deflection of trajectory) or long-range gravitational effect of the object. 



Bulk Densities
• So for bodies with orbiting satellites (Sun, Mars, Earth, 

Jupiter etc.) M and <  are trivial to obtain

• For bodies without orbiting satellites, things are more 
difficult – we must look for subtle perturbations to other 
bodies’ orbits (e.g. the effect of a large asteroid on Mars’ 
orbit, or the effect on a nearby spacecraft’s orbit)

• Bulk densities are an important observational constraint 
on the structure of a planet. A selection is given below:

Object Earth Mars Moon Mathilde Ida Callisto Io Saturn Pluto

R (km) 6378 3390 1737 27 16 2400 1821 60300 1180

(g/cc) 5.52 3.93 3.34 1.3 2.6 1.85 3.53 0.69 ~1.9

Data from Lodders and Fegley, 1998



What do the densities tell us?
• Densities tell us about the different proportions of 

gas/ice/rock/metal in each planet

• But we have to take into account the facts that (1) bodies 
with low pressures may have high porosity, and that (2) 
most materials get denser under increasing pressure

• A big planet with the same bulk composition as a little 
planet will have a higher density because of this self-
compression (e.g. Earth vs. Mars)

• In order to take self-compression into account, we need 
to know the behaviour of material under pressure.

• On their own, densities are of limited use. We have to 
use the information in conjunction with other data, like 
our expectations of bulk composition.



Bulk composition (reminder)

• Four most common refractory elements: Mg, Si, Fe, 
S, present in (number) ratios 1:1:0.9:0.45

• Inner solar system bodies will consist of silicates 
(Mg,Fe,SiO3) plus iron cores

• These cores may be sulphur-rich (Mars?)

• Outer solar system bodies (beyond the snow line) will 
be the same but with solid H2O mantles on top

Element C O Mg Si S Fe

Log10 (No. 
Atoms)

7.00 7.32 6.0 6.0 5.65 5.95

Condens.
Temp (K)

78 -- 1340 1529 674 1337



Example: Venus
• Bulk density of Venus is 5.24 g/cc

• Surface composition of Venus is basaltic, suggesting 
peridotite mantle, with a density ~3 g/cc

• Peridotite mantles have an Mg:Fe ratio of 9:1

• Primitive nebula has an Mg:Fe ratio of roughly 1:1

• What do we conclude?



Example: Venus
• Bulk density of Venus is 5.24 g/cc

• Surface composition of Venus is basaltic, suggesting peridotite 
mantle, with a density ~3 g/cc

• Peridotite mantles have an Mg:Fe ratio of 9:1

• Primitive nebula has an Mg:Fe ratio of roughly 1:1

• What do we conclude?

• Venus has an iron core (explains the high bulk density and iron 
depletion in the mantle)

• What other techniques could we use to confirm this hypothesis?



Pressures inside planets
• Hydrostatic assumption (planet has no strength)
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• For a planet of constant density  (is this reasonable?)

• So the central pressure of a planet increases as the square 
of its radius

• Moon R=1800km P=7.2 Gpa, Mars R=3400km P=26 GPa



Pressures inside planets
• The pressure inside a planet controls how materials behave

• E.g. porosity gets removed by material compacting and 
flowing, at pressures ~ few MPa

• The pressure required to cause a material’s density to 
change significantly depends on the bulk modulus of that 
material

K

dPd 

 The bulk modulus K controls the 

change in density (or volume) due 
to a change in pressure

• Typical bulk modulus for silicates is ~100 GPa
• Pressure near base of mantle on Earth is ~100 GPa

• So change in density from surface to base of mantle should 
be roughly a factor of 2 (ignoring phase changes)



Real planets

• Which planet is 
this?

• Where does this 
information 
come from?

• Notice the increase in mantle density with depth 
               – is it a smooth curve?

• How does gravity vary within the planet?



Other techniques
• There are other things we can do 

• We can make use of more gravitational information to 
determine the moment of inertia of a body, and hence 
the distribution of mass within its interior

– I/(MR2) gives information on central concentration

• There are also other techniques
– Seismology (Earth, Moon)

– Electromagnetic studies (Earth, Moon, Galilean satellites)



Temperature Structures
• Planets generally start out hot (see below)

• But their surfaces (in the absence of an 
atmosphere) tend to cool very rapidly 

• So a temperature gradient exists between the 
planet’s interior and surface

• The temperature gradient means that the planet 
will tend to cool down with time



Conduction - Fourier’s Law

• Heat flow F 
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• Heat flows from hot to cold (thermodynamics) and 
is proportional to the temperature gradient

• Here k is the thermal conductivity (Wm-1K-1) and 
units of F are Wm-2  (heat flux is per unit area)

• Typical values for k are 2-4 Wm-1K-1 (rock, ice) and 
30-60 Wm-1K-1 (metal)

• Solar energy flux at 1 au is ~1300 W m-2

• Mean subsurface heat flux on Earth is 0.08  W m-2

• What controls the surface temperature of most 
planetary bodies?



Specific Heat Capacity Cp

• The specific heat capacity Cp tells us how much energy 
needs to be added/subtracted to 1 kg of material to make 
its temperature increase/decrease by 1K

• Units: J kg-1 K-1

• Typical values: rock 1200 J kg-1 K-1 , ice 4200 J kg-1 K-1

• Energy = mass x specific heat capacity x temp. change

• E.g. if the temperature gradient near the Earth’s surface 
is 25 K/km, how fast is the Earth cooling down on 
average?                     (about 170 K/Gyr)

• Why is this estimate a bit too large?

TmCW p



Energy of Accretion
• Let’s assume that a planet is built up like an onion, one 

shell at a time. How much energy is involved in putting 
the planet together?

early later

In which situation is 
more energy delivered?

Total accretional energy = 

R

GM 2

5

3

If all this energy goes into heat*, what is the resulting temperature change?

RC

GM
T

p5

3

Earth M=6x1024 kg R=6400km so T=30,000K
Mars M=6x1023 kg R=3400km so T=6,000K
What do we conclude from this exercise?

* Is this a reasonable 
assumption?



Accretion and Initial Temperatures
• If accretion occurs by lots of small impacts, a lot of the 

energy may be lost to space
• If accretion occurs by a few big impacts, all the energy 

will be deposited in the planet’s interior
• Additional energy is released as differentiation occurs – 

dense iron sinks to centre of planet and releases potential 
energy as it does so

• What about radioactive isotopes? Short-lived radio-
isotopes (26Al, 60Fe) can give out a lot of heat if bodies 
form while they are still active (~1 Myr after solar system 
formation)

• A big primordial atmosphere can also keep a planet hot
• So the rate and style of accretion (big vs. small impacts) 

is important, as well as how big the planet ends up



Cooling a planet
• Large silicate planets (Earth, 

Venus) probably started out 
molten – magma ocean

• Magma ocean may have been 
helped by thick early atmosphere 
(high surface temperatures)

• Once atmosphere dissipated, surface will have cooled 
rapidly and formed a solid crust over molten interior

• If solid crust floats (e.g. plagioclase on the Moon) then it 
will insulate the interior, which will cool slowly (~ Myrs)

• If the crust sinks, then cooling is rapid (~ kyrs)

• What happens once the magma ocean has solidified?



Cooling a planet (cont’d)
• Planets which are small or cold will lose heat entirely 

by conduction

• For planets which are large or warm, the interior 
(mantle) will be convecting beneath a (conductive) 
stagnant lid (also known as the lithosphere)

• Whether convection occurs depends if the Rayleigh 
number Ra exceeds a critical value, ~1000


 3Tdg

Ra


Here is density, g is gravity,  is thermal 
expansivity, T is the temperature contrast, d is 
the layer thickness,  is the thermal diffusivity 
and  is the viscosity. Note that  is strongly 
temperature-dependent.
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Convection
• Convective behaviour is governed by the Rayleigh 

number Ra

• Higher Ra means more vigorous convection, higher 
heat flux, thinner stagnant lid

• As the mantle cools,  increases, Ra decreases, rate 
of cooling decreases -> self-regulating system

Image courtesy Walter Kiefer, Ra=3.7x106, Mars

Stagnant lid (cold, rigid)

Plume (upwelling, hot)

Sinking blob (cold)

The number of upwellings and 
downwellings depends on the 
balance between internal heating 
and bottom heating of the 
mantle
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