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Abstract

We explore the orbital dynamics of an Earth-crossing objects with the intent to un-
derstand the time scales under which an ‘orbital stream’ of material could produce time-
correlated meteororite falls. These ‘meteorite streams’ have been suggested to be asso-
ciated with three well-known meteorite-dropping fireballs (Innisfree, Peekskill, and most
recently Pribram). We have performed two different analyses of the statistical significance
of the ‘orbital similarity’, in particular calculating how often orbits of the same level of
similarity would come from a random sample. Secondly, we have performed extremely
detailed numerical integrations related to these three cases, and find that if they were
streams of objects in similar orbits then they would become ‘decoherent’ (in the sense
that the day of fall of meteorites of these streams become almost random) on times scales
of a few tens of thousands to a few hundred thousand years. Thus, an extremely recent
breakup would be required, much more recent that the cosmic ray exposure ages of the
recovered falls in each case. We conclude that orbital destruction is too efficient to allow
the existence of long-lived meteoroid streams and that the statistical evidence for such
streams is insufficient; random fall patterns show comparable levels of clustering.



1 Introduction

Meteor streams are a well-accepted and well-understood phenomenom, in which an object
of cometary composition loses material during each orbit and populates a region of orbital
space near that of the parent comet with small particles that have escaped from the comet
at low speeds; if this orbit is currently intersecting Earth’s we see an annual meteor shower
near the day of the nodal intersection. Due to the recent and continual re-supply caused
by the perihelion passage, many meteors on very similar pre-atmospheric orbits occur due
to the entry of particles recently escaping from the parent comet and occupying nearly
the same orbit (eg. Messenger, 2002).

The situation is much more unclear regarding meteorite-dropping fireballs, that is,
fireballs for which the pre-atmospheric object is sufficiently large and strong to survive
atmospheric entry and deliver intact fragments to the ground. Some fireballs have been
observed by photographic camera networks (Halliday et al. (1978), McCrosky et al. (1979),
Ceplecha (1977)) or by ground-based observers (eg. Brown et al. , 1994) with sufficient
coverage to compute a pre-atmospheric orbit for the incoming object, some fraction of
which will be non-cometary. Wetherill and Revelle (1981) and Halliday et al (1996)
analyzed photometric fireball data from the Prairie and MORP networks to filter out
fireballs whose pre-atmospheric objects were likely cometary. Morbidelli and Gladman
(1998) showed that the orbital distribution of the non-cometary fireballs (presumably
mostly chondritic) was perfectly consistent with sources in the main asteroid belt, as is
commonly accepted.

The fireball orbit database has been analysed by several workers to search for the pos-
sibility of ‘meteoroid streams’; that is, meteorite dropping fireballs whose pre-atmospheric
orbits would indicate that there is a stream of meteoroids in very similar Earth-crossing
orbits. We summarize below the three main cases, which we will later use as case studies
for our detailed numerical integrations. The orbits are listend in Table 1.

Pribram: One of the largest fireballs with a well-determined orbit is that of Pribram,
an Hb ordinary chondrite which was observed by the European Camera Network on April 7
1959 (Ceplacha 1977). On April 6 2002 the Neuschwanstein chondrite (Spurny et al. 2003)
was also observed by the same camera network and calculated to have a very similar orbit
to that of Pribram. They estimate that, based on 200 ‘meteor candidate’ orbits taken from
the MORP data, the probability of getting a orbital match as close as that observed was
1 in 100,000 and that therefore the Pribram/Neuschwanstein similarity was not chance,
although reconciling the different petrographic types (H5/ELG6, respectively) and very
different cosmic-ray exposure ages (CRE) (12/48 Myr, respectively) was acknowledged to
be problematic.

Innisfree: The Canadian Meteorite Observation and Recovery Project (MORP) ob-
served a fireball on Feb 5, 1977 (Halliday et al. 1978), and subsequently recovered the
Innisfree LL-chondrite fragment. Three years later the same network observed a sec-
ond fireball (Halliday et al. 1987) which should have resulted in a fall near Ridgedale



Fall a(AU) e i Q w ¢ (AU)
Pribram  2.401 0.6711 10.482° 17.79147° 241.750° 0.7895
Innisfree  1.872  0.473  12.27° 316.80°  177.97° 0.986
Peekskill 1.49 0.41 4.9° 17.030° 308° 0.88

Table 1: Pre-atmospheric orbits of three fireballs of interest. Data are taken from Spurny
et al. (2003), Halliday et al. (1987) and Brown et al. (1994). Here a is the semi-major
axis; e is the eccentricity; ¢ is the inclination; € is the longitude of ascending node; w is
the argument of pericenter; and ¢ is the perihelion distance. Table 2 lists the companion
fireballs for Pribram and and Innisfree. The last digit in each measurement is uncertain.

Saskatchewan (and is thus known as Ridgedale even though no material was recovered).
The calculated pre-atmospheric orbits of these two objects were quite similar, leading
Halliday et al. (1987) to postulate the existence of a meteoroid stream. They noted that
the 27-Myr CRE age was problematic in terms of the size expected for the parent ob-
ject; that is, a parent object larger than 140 m diameter would have to be fragmented
in order to get two fireballs, and yet the CRE data shows that Innisfree itself was either
in a <4 m body when it hit the atmosphere or spent most of its CRE exposure on the
surface of a 140-meter object (a problem we shall address in our conclusions). Those
authors did note that the light production and fragmentation pattern of Ridgedale was
quite different from that of Innisfree; they ascribed this to Innisfree having more fractures
before hitting the Earth’s atmosphere. In a final paper, Halliday et al. (1990) examined
the MORP and Prairie network (McCrosky et al. 1979) databases and selected several
fireball groups as potentially corresponding to streams of meteoroids in Earth-crossing
orbits; Innisfree/Ridgedale are part of the most significant grouping that they find, and
that grouping was also proposed to be linked to a stream of asteroids by Drummond
(1991).

Peekskill: The last meteoroid stream candidate we will explore is one lacking direct
observation of two similar pre-atmospheric orbits. Rather, Dodd et al. (1993) identified a
set of meteorites which had similar day of fall parameters and sets of labile trace elements,
as determined by a multivariate statistical analysis, and proposed meteoroid streams as
a mechanism to explain the pattern. Later, these same authors (Lipschutz et al. , 1997)
noted that the well-observed Peekskill fall (Brown et al. 1994) was part of one of their
identified streams. Thus, although close orbital similarity with another fireball does not
exist here, we will also study the orbital evolution of a ‘Peekskill’ stream.

Our approach to the problem will be to first attempt to calculate the statistical signifi-
cance of the level of ‘similarity’ that has been observed in the growing world-wide database
of fireball orbits. We will do this by examining the number of cases of similarity that one
would find from a totally random distribution of Earth-impacting objects. We will then
proceed to perform numerical integrations of the three stream candidates discussed above



Object Original Fall a(AU) e i Q w D’
Neuschwanstein Pribram 240 0.67 11.41° 16.82664° 241.20° 0.009
Ridgedale Innisfree 1.873 0475 12.33° 316.01° 186.66° 0.034

Table 2: Pre-atmospheric orbits of companion fireballs. These objects have very similar
orbits to the original fall in each case (as listed in Table 1). Data are taken from Spurny
et al. (2003) and Halliday et al. (1987). The last digit in each measurement is uncertain.

to measure the time scale over which such material could retain a ‘stream-like’ character-
istic.

2 Statistical significance of orbital similarity

The introduction identified three main arguments for the existence of ‘streams’ of meteo-
riods: (i) The existence of pairs fireballs with very similar pre-atmospheric orbits; (ii) The
existence of ‘clusters’ of fireballs with mutually similar orbits; and (iii) The existence of
meteorite falls with correlated day-of-fall and chemical trace elements. In this section, we
wish to examine the statistical strength of these claims. That is, we wish to determine the
rate of chance coincidences occurring in ‘random’ distributions of meteorite falls. To con-
clude that such a signal is non-random, we would normally wish that such occurences fall
outside a one-sided 30 deviation; that is, the clustering happens less than (100-99.7)/2=
0.15% of the time. (Obviously no-one would get excited if the clustering was 3o less than
a random distribution!). However we shall see that even one-sided 20 deviations (which
occur less than 2.5% of the time in a random distribution) are rare.

In Sections 2.2 and 2.3, we repeat calculations performed in several papers in the liter-
ature in support of arguments (i) and (ii) on ‘random’ fireball databases. The generation
of our ‘random’ databases are described in Section 2.1. Argument (iii) is more compli-
cated to model, and we thus examine this argument only in the context of our dynamic
modelling of streams in Section 3.

2.1 Modelling a ‘Random’ Distribution of Fireballs

In order to assess the probability of chance coincidences from a ‘random’ fireball distribu-
tion, we created two ‘unclustered’ fireball databases: one based on our current theoretical
understanding of the source of meteoritic fireballs (i.e., the Near-Earth Asteroid (NEA)
population), and one based on the current database of real fireball orbits. In both cases,
our goal is to build an orbital distribution of fireballs which, while having an (a, e, ) dis-
tribution similar to real fireballs has no correlations in the other angular orbital variables
which would produce pre-atmospheric orbital similarities.
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Figure 1: Greyscale histograms of our various fireball databases in a — e space. The
greyscale indicates the relative population in each a — e cell. In all panels, the elements
of the three stream candidates are also indicated. (Upper left): Our raw sample of the
NEA modelling of Bottke et al. (2002), restricted to lie with pericenter below 1 AU and
apocenter above 1 AU. (Upper right): A sample generation of 10000 Earth-impacting
fireballs from the NEA model biased by the collision probability of Fig. 2. (Lower left):
The database of 481 Type I and II fireballs; (Lower right): The restricted database of 351
Type I and II fireballs obtained by selecting orbits from the 481 Type I and II fireballs
with terminal masses greater than 100 grams and encounter velocities below 25 km/s
(Section 2.3). Similar selection criteria were applied by Halliday et al. (1990). Note that
the collision probability bias heavily selects particles along the fringes of the distribution
(corresponding to perihelion and aphelion near 1 AU), and thus greatly reduces the variety
of Earth-impacting orbits. Note also the effect of restricting our fireball database to low
encounter velocities: orbits with high eccentricity are removed, further reducing the range
of the orbital elements of Earth-impacting orbits.
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Figure 2: The Earth collision probability per year of Farinelli and Davis (1992) in a — e
space (with ¢ = 1°). Note especially the ridge along the upper left of the Earth-crossing
region corresponding to the heavy selection of pericenter near ¢ = a(1 —e) =1 AU. This
is because particles in such orbits are nearly tangent to the Earth’s orbit and thus spend
a larger fraction of their orbital period near the 1 AU than other orbits. The near-Earth
space occupied by the high collision probability orbits along of the bottom of the figure
is not heavily populated by NEAs (cf. Fig. 1, upper left panel) and thus contributes
few fireballs, despite its high collision probability. For higher inclinations, the collision
probability drops monotonically.



For our theoretical model, we have used a sample of modelling published by Bottke
et al. (2002), kindly provided to us by those authors. This sample consists of 25000 orbits
distributed throughout near-Earth space which are consistent with the de-biased NEA
orbital distribution; its projection in a — e space is shown in Fig. 1. Although this model
represents the distribution in space, the subset of these orbits which actually impact the
Earth and thus contribute to the fireball flux will be heavily weighted towards certain types
of orbits, specifically, orbits with pericenter near 1 AU and orbits with low inclination
(Morbidelli and Gladman, 1998). To model this bias, we calculate the probability per
year that an orbit from this distribution would produce an Earth-impacting meteoroid
using the algorithm of Farinelli and Davis (1992), based on the formulation of Wetherill
(1967). (An implementation was provided by the first authors.) This code calculates the
collision probability per unit time for an (a, e, ) triplet assuming that an orbit with this
triplet completes a full precessional cycle in longitude of ascending node and argument
of pericenter. For reference, Fig. 2 provides a greyscale plot of this collision probability
distribution in a — e space. The collision probability per unit time is large for orbits with
a < 1, but more important for this problem is the enhancement along the "top” of the
distribution with ¢ = a(1 —e) &~ 1 AU, where the NEA population is large (see first panel
of Fig. 1).

From these data, we produced a random distribution of fireballs by:

(1) Picking a random (a, e, ) triplet from the NEA distribution

(2) Using the collision probability of that triplet to select whether or not it would impact
the earth. If not, we returned to (1).

(3) Generating a random longitude of node for the orbit

(4) Fixing the argument of pericenter such that either the ascending or descending node
is within the torus swept out by the Earth, obviously required for a meteoroid orbit
to impact the Earth. As the current eccentricity of the Earth is 0.017, this torus
has an inner radius of 0.983 AU and outer radius of 1.017 AU.

This allows us to construct databases of arbitrary numbers of orbits described by their
five orbital elements. Fig. 1 shows a sample generation of 10000 orbits from the NEA
database.

For our second distribution of orbital elements, based on observed fireball data, we
obtained a compilation of 652 fireballs in the world-wide literature (provided via Peter
Brown, personal communication 2003), the largest such database known to us. This
database consists chiefly of fireballs published by the MORP, European, and Prairie net-
works. Because this fireball database contains a significant cometary component, we filter
out all orbits with e > 1. In addition, this database classifies each fireball into Type I,
IT, and III fireballs based on a light-curve data classification system developed by Ce-
plecha (1977). Type III fireballs are in general cometary, and thus we remove them from
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the database as well. This leaves a total of 481 presumed meteorite-dropping fireballs.
Fig. 1 shows the distribution of these 481 fireballs in a — e space, with the three stream
candidates identified. To construct our second fireball model, we discard the longitude
of ascending node and argument of pericenter information since we will randomize these
two quantities. The (a, e, ) distribution of this compilation may be used to create a sec-
ond database of arbitrary size via the same procedure outlined for the NEA modelling,
except that we do not weight the orbits with collision probability, since has already been
accomplished by virtue of the fact that the objects struck the Earth.

We thus possess two suitable models for a random fireball distribution. That is,
because of the way in which they are constructed, these Earth-crossing distributions
contain no structure in the sense that the angular orbital elements are randomized. This
allows us to extract samples of fireballs which will allow us to measure the ‘false positive’
rate of orbital coincidences, in which light we can examine claims made in support of
meteoroid ‘streams’.

2.2 Pair Similarity

Table 2 shows two pairs of fireballs with very similar pre-atmospheric orbits. Pribram
and Neuschwanstein, in particular, appear to be nearly identical. Spurny et al. (2003)
quantify this similarity by comparing the orbital elements of these two fireballs via the
D' criterion, a variant of the D criterion originially proposed by Southworth and Hawkins
(1963) developed by Drummond (1981). For reference, we its definition here:

ne (€1~ e2)? g1 — Q2 2 () 2 (e1+€9) 6 2
o7 = (222) + () + (0) + ()

where 1 and 6 are given by

¥ = cos (cos iy cosie + sin iy siniy cos(; — Q)
f = cos '(sin ¢ sin ¢y + oS ¢y €os Py cos(&; — &)

where ¢ is the ecliptic latitude
¢ = sin !(sinisinw)
and £ is the longitude of perihelion

£=Q + tan"!(cositanw) O<w<Zor T<w<2r
£=Q + tan'(cositanw) +7 I <w <L

This criterion is essentially an empirical metric which measures a ‘distance’ between
two heliocentric orbits. Other metrics (exmaple: Valsecchi et al. 1999) exist in the
literature. In particular, note that D’ uses differences in ¢ rather than a, even though the
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Figure 3: A histogram of the number of trials required to obtain a pair of orbits with
D" < 0.009. The average number of trials required is 42.4 (shown with a vertical dashed
line), while the most likely number of trials falls in the smallest bin of 10 trials.
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Figure 4: The probability of getting a match in a group of N orbits as defined by some
value of D’. The horizontal lines represent one-sided 1o, 20, and 30 confidence levels
(from top to bottom). The orbits were drawn from the fireball database in the right
plot, and from the biased NEA modelling on the left. The axes are logarithmic because
the increase as a function of N is very steep. The cutoffs we have shown are: Halliday’s
threshold of 0.106 which he uses to define ‘small D’’; an Innisfree/Ridgedale level match
(D" < 0.034); a Pribram/Neuschwanstein level match (D' < 0.009); and the D' cutoff
required in each case to achieve a 20 confidence level at 475 orbits (the final curve in each

plot).
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latter is much more stable against gravitational perturbation. According to this criterion,
Pribram and Neuschwanstein are a ‘distance’ of D' ~ 0.009 apart. Spurny et al. assessed
the probability of obtaining two such fireballs in a data set of size 200 to be of order 1
in 100,000. Although there are more fireballs in the worldwide database against which a
match could have been claimed, we begin with this well-defined sample size.

To calculate the expected probability of small D' pairs in a sample of this size, we
extract sets of 200 orbits from our NEA-based fireball model using the procedure outlined
in Section 2.1 and calculate the value of the D’ criterion for each pair of orbits (producing
19900 values). We generate these sets of orbits until a set contains at least one value of
D' < 0.009. We repeat this process 1000 times, recording the number of sets of orbits
generated before a match was found. Fig. 3 shows the results of this process in the form
of a histogram. This procedure is simply a series of Bernoulli trials in which each trial
has an equal probability of success (where success is defined as producing D' < 0.009).
Thus, the probability that any given trial will contain such a match is given by the inverse
of the average number of trials required for success. This average was calculated to be
42.4, and thus the probability for any given trial is approximately 2.4%. This is a stark
contrast to the Spurny et al. estimate of 0.001%.

We also wish to investigate how the probability of obtaining a match as close as
Pribram/Neuschwanstein increases with the size of the orbital database. To address this,
we generated samples of N orbits using the NEA model and noted the value of the best
(lowest) D' from all possible pairs, repeating this process 10000 times for each value
of N. We stop at N = 475 because this is approximately the size of the worldwide
fireball database. We repeated the same experiment using our fireball database as the
orbital distribution. Fig. 4 shows, for each value of N, the fraction of trials containing
at least one value of D' less than a cutoff for several values of the cutoff. We note
that, for our NEA-based distribution, the probability of getting as match a close as
Pribram/Neuschwanstein reaches of order 10% at 475 orbits. If we only demand even
a 20 departure from ‘randomness’, the Pribram/Neuschwanstein match fails to provide
proof that we can reject the hypothesis that the observed distribution is non-random.
Indeed, as indicated in Fig. 4, a D’ threshold of 0.0034 is required to claim even a 20
departure from randomness in our NEA model database.

If we examine the result using the 481-fireball database as our model, the probabil-
ities of obtaining matches are far greater. Indeed, the probability of a match reaches
of order 70% for D' < 0.009, indicating that virtually all databases of size 475 would
contain a match as close as Pribram/Neuschwanstein. An alert reader may argue that
the fireball database, as determined by observation, may in fact already contain streams,
thus accounting for the large difference the two figures. However, our randomization
procedure would have largely destroyed the clusters: Because we randomized the nodal
longitude and randomly chosen the argument of pericenter from the values allowing an
Earth-intersecting orbit, any two orbits that were nearby in the original database would
look very different in our generated samples. To quantify this, we took a single (a,e, 1)
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triplet and generated 200 orbits with random angles; upon comparing all of these 200
orbits with each other (10900 comparisons), we found that the average value of D’ was
~ 0.2. So despite having identical (a, e, i) values, these objects would not be deemed to
be members of clusters by the D’ technique.

There are several factors which likely account for the increased similarity in the fireball
database when compared to the NEA-based model. Although we have accounted for
the geometrical collision-probability biasing, the pre-atmospheric orbits of fireballs which
really drop meteorties will restricted due to entry speed biases. Orbits with large e and
relative to Earth, and to a lesser extent with large a, will strike the top of the atmosphere
at higher speed (see Morbidelli and Gladman 1998 for a figure). As discussed by Wetherill
and Revelle (1981), these high-speed entries will suffer greater atmospheric ablation and
are less likely to yield fireballs with terminal masses greater than 100 grams. This results
in the available orbital parameter space being greatly restricted; the reality of the effect
can be easily seen by comparing the upper right and lower left panels of Fig. 1 in which
one sees that the high-e region of a, e space is under-represented in the fireball database
relative to the collision-biased NEA distribution. We thus feel that our modelling based
on the NEA distribution serves as a lower limit to our clustering calculations and the
results produced using the 481-element fireball are a better approximation to the truth.
We claim that even our analysis using the fireball database is an significant underestimate
of the pairing rate, for there is an extremely obvious lack of fireballs in the summer months
in our worldwide database (roughly a factor of 4 times as many fireballs during the winter
months); this is almost certainly due to the tiny number of dark hours in summer months
available for fireball detection in the northern hemisphere where the fireball networks
are located and will increase the chance pairing above our randomly distributed nodal
longitudes (since 2 ~ 90° will be avoided). Thus, because a match of D' < 0.009 is not
remarkable in a world where over 400 fireballs have been compiled, we conclude from
our modelling that a Pribram/Neuschwanstein match is not a statistically significant
departure from randomness.

2.3 Orbital Clusters

Halliday et al. (1990) searched fireball databases and identified ‘clusters’ of orbits in
which each member falls within some D’ cutoff of the other members. Drummond (1991)
performed a search for streams of asteroids and reported that some of his asteroid streams
matched the fireball streams identified by Halliday et al. . In this section we examine the
claims made by Halliday et al. (1990).

Using observations from the MORP camera network operated in western Canada, Hal-
liday et al. identified 56 events which they believed to be meteorite-dropping. Combined
with 33 events from the Prairie Network, they had a database of 89 meteorite-dropping
orbits to be probed for clustering. Unfortunately, the selection process of this sample is
non-uniform and somewhat unclear. In comparing each of the 56 MORP objects with
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the remaining 88 orbits, they found 73 values of D’ below their cutoff of 0.106. Based
on a calculation from a generated set of 207 ‘randomized’ orbits, they expected that only
around 1.5% of the comparisons would be less than 0.106 by chance alone, or in the case
of their 89 orbits, only 51 pairs should fall below D' = 0.106. They thus concluded that
the 89 orbits are more clustered than a randomized sample, indicating that the sample
may exhibit clustering. They proceeded to search this fireball sample for clusters of orbits
in which each member of the group falls within D’ < 0.087 of the other members. This
search identified 1 cluster of 3 orbits, 2 clusters of 4, and 1 cluster of 5.

351 Orbits Drawn 89 Orbits Drawn

Relative frequency of N
Relative frequency of N

400 600 800 0 20 40 60 80
Number of pairs N with D' < 0.106 Number of pairs N with D' < 0.106

Figure 5: (Left): A histogram of the number of orbital pairs with D' < 0.106 in 351 orbits
with randomized angles selected from the 351 restricted fireball orbits. The location of
the real 351 orbit database is marked with an X. The vertical lines are +10 confidence
levels. (Right): A histogram of the number of orbital pairs with D' < 0.106 in 89 orbits
selected from the 351 restricted fireball orbits without randomizing angles. Halliday’s
result of 73 pairs is marked with an X. Clearly, a sample as clustered is Halliday’s is very
abnormal according to our fireball database.

We attempted to reproduce the first calculation by creating a database of orbits similar
in distribution to that in Halliday et al. . We pruned our database of 481 fireballs by
taking away all fireballs with terminal masses below 100 grams and entry velocities greater
than 25 kmm/s (similar restrictions were used by Halliday et al. ). This left a database of
351 orbits, whose distribution was shown in Fig. 1. We wished to see if this distribution
was consistent with a distribution randomly distributed in 2 and w. We generated 351
orbits with randomized angles from this database, that is, we created a database with a
similar (a, e, 1) distribution and of the same size, but with randomized angles. We counted
the number of pairs of orbits with D' < 0.106, repeating this process 1000 times. The
result is shown in Fig. 5. We find that the real fireball database, marked with an X
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on the plot, does not fall outside a 1o deviation from a randomized sample; thus, the
distribution in the longitude of ascending node and argument of pericenter of the fireball
database does not show a significant departure from randomness.

We then attempted to reproduce Halliday’s calculation based on their 89 selected
orbits. We drew sets of 89 orbits from our 351-fireball database to produce samples
equivalent to Halliday’s. In this case we did not randomize the node and argument of
pericenter, nor did we allow the same orbit to be drawn twice. We compared the first 56
orbits to each of the 89 orbits and recorded the number of orbit pairs with D' < 0.106.
Fig. 5 shows a histogram for 1000 such trials. We found that in those 1000 samples of 89
orbits only 1 group contained more than 73 pairs. To our surprise we thus find that that
Halliday’s sample of 89 orbits is significantly more clustered than an average sample of
fireball orbits from the worldwide database, leading to a puzzle. We have not randomized
the nodal and perihelion angles of these 89-orbit samples; why, then, should these 89
selected fireballs not be a representative sample of the global fireball database? Halliday
et al. state that these are a terminal-mass selected sample of MORP and Prairie network
fireballs (even though we note that McCrosky et al. (1976) claim that the Prairie network
fireballs should not be used for statistical orbital studies as they are a biased selection).
We are unable to determine why the 89-orbit set of Halliday et al. is significantly different
from the rest of the worldwide collection, and only conclude that this sub-sample appears
not to be representative of the real pre-atmospheric orbit distribution.

Regardless of the selection bias, the 89-orbit sample did contain clusters of similar fire-
balls, as noted above. However, we found that this level of clustering may be reproduced
from a random distribution. We performed this calculation by drawing 89 (this time ran-
domized in € and w) orbits both from our NEA model database and from our restricted
database of 351 orbits using the procedure described in Section 2.1. We searched each
sample for one or more clusters with D' < 0.087 and noted of the size of each cluster
found. For our purposes, we defined a ‘cluster’ as a set of orbits in which all members
were within some D’ cutoff of at least one of the orbits. Fig. 6 shows the fraction of
1000 such trials containing a cluster of size at least N orbits as a function of N. We
see that a cluster of five orbits (the largest in Halliday’s 89-orbit sample) is not a 20
departure from randomness even in the case of the NEA modelling. In the case of the
restricted fireball database, it does not fall outside the 1o confidence level. We thus reach
the same conclusion for orbital clusters as with pair similarity: the clustering identified
in the literature is not a sufficiently significant departure from randomness to claim that
the global distribution of fireballs is nonrandom.

3 Decoherence of meteoroid streams

Having addressed the question of the false positive rate when searching for evidence of
orbital clustering in a distribution which is actually random, we now explore the indepen-
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Figure 6: The fraction of groups of 89 or 351 random orbits containing at least one cluster
with at least N members as a function of N, where a cluster is defined as N members
within D'=0.087 of one of the cluster members. The horizontal lines represent one-sided
1o, 20, and 30 confidence levels (from top to bottom, respectively). The dashed curves
shows the results of drawing orbits from collision-probability biased NEA model; the solid
line shows the results when drawing orbits from the fireball database (but with angles
randomized). We see in both cases that the fireball distribution is significantly more
clustered than a collision-probability-weighted NEA distribution; this is likely due to the
additional filtering imposed when selecting meteorite-dropping fireballs from near-Earth
orbits. Using the fireball database as a lower limit on expected random clustering, we
see that 20 evidence for non-random clustering would require clusters of 7 fireballs in an
89-elements sample or 16 fireballs in the case of the 351 fireballs, in both cases below
what is observed.
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dent question of how long such Earth-crossing streams would persist should they exist.

The most obvious mechanism for the creation of a meteoroid stream is the breakup
of some parent body, presumably through the collision of a body either entirely in the
main asteroid belt or (more likely) on an Earth-crossing orbit. To use the Morbidelli and
Gladman (1998) nomenclature, we postulate that the ‘immediate precursor body’ (that
in which the objects existed just before a collision created the fragment that later hits
the top of the Earth’s atmosphere) was an object already in Earth-crossing space. The
arrival of a coherent, confined stream from a non-Earth-crossing to an Earth-crossing orbit
is much more difficult than itsshort-term survival due to the extremely chaotic nature of
the delivery process to Earth-crossing orbits (Gladman et al. 1997); we shall return to
this point below. We turn first to the question: if the three fireballs listed in Table 1 are
each members of orbital streams of material, how long could these structures survive in a
coherent sense? That is, how long would the meteorites being delivered to Earth appear
to come from similar pre-atmospheric orbits or, even less restrictively, fall on similar days
even if their orbits are unknown?

We have addressed this question by conducting extremely detailed numerical simu-
lations of the three candidate streams for time scales of a few hundred thousand years.
We take the initial state of the stream to be a suite of test particles orbiting on initially
identical Keplerian ellipses differing only in a random mean anomaly along the orbit. It is
easy to show (see, eg., Harris 1993) that even for tiny initial ’break up speeds’ of < 10 me-
ters per second for fragments escaping a hypothetical initial breakup, Kepler shear along
the orbit will spread the fragments out around the entire orbit in only a few thousands of
years; we performed a trivial numerical simulation to confirm this.

We created initial streams in the orbits of Table 1, taking the 5 measured orbital
elements and adding a mean anomaly randomly selected between 0° and 360° (using
mean anomoly rather than true in order to populate the orbit evenly according to the time
spent along the orbit). We generated 20 022 such particles for each stream. All 9 planets
were included in the simulations. Simulations proceeded for 150,000 or 500,000 years of
simulated time, with a ‘base’ time step of 0.003 years (= 1 day), which is automatically
sub-divided by the integrator upon close approach to a planet. Test particles are removed
from the integration if they collide with a planet or the Sun, or if they receeded to a
distance of 1000 AU from the Sun (at which point they were clearly not part of an orbital
stream). The integrations were conducted on the Leverrier 94-CPU Beowulf cluster at the
University of British Columbia, requiring about five CPU-years of computational effort
per simulation.

The simulations were conducted with the symplectic integrator swift_skeel. This
numerical algorithm is a minor variant of the SYMBA integrator (Duncan et al. (1998))
which efficiently integrates the equations of motions of a Solar System problem (i.e.,
dominated by a central mass). This algorithm is a full and explicit numerical integration
in 3-dimensional space without making the kinds of approximations done in Monte-Carlo
models; in particular, the nodal longitudes of the orbits of all particles are accurately
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tracked. We produced a modified version of skeel that logs information about all planetary
close passages (that is, when the integrator detected perigee passage within 0.01 AU of
Earth). This logging is necessary because, even with this huge number of test particles,
direct impacts onto Earth are rare given Earth’s small cross-section and the short time
scales over which the turn out to streams survive. The close passages tell us when portions
of the stream may strike Earth, and will clearly demonstrate how quickly the stream loses
a spatially-coherent character.

We interpret our numerical investigations for the purposes of this paper in two ways.
In the context of discussion of Dodd et al. (1993) and Lipschutz et al. (1997), we wish to
examine over what duration an initially tightly-confined stream would produce meteorite
falls which are confined in time. Using the Lipschutz et al. (1997) identification of Peekskill
as a member of a stream with total ‘day-of-fall spread’ of about two weeks, we adopt a
similar criterion. Such a two-week concentration implies that the nodal longitudes of the
meteorite falls in question were within a ~ 14° band.

We first describe the integrations qualitatively. We begin with a stream of material
which, because the objects on which our three simulations are based struck the Earth,
have either an ascending or descending node very close to 1 AU from the Sun. As time
advances this quickly ceases to be true as the secular precession induced on the particle
orbits cause them to precess by both regressing their longitude of node (twisting the
orbital plane) and advancing their argument of perihelion (which changes the distance of
the nodes from the Sun). Thus, in short order the intersecting state of the Earth’s and
stream’s mean orbit ceases as the node of the stream in question moves either outside or
inside of roughly 1 AU. This orbit-intersecting state will re-occur once the argument of
pericenter advances far enough to bring the stream’s orbital ellipse back into contact with
Earth’s orbit; this usually occurs four times per precession cycle although more complex
geometries are possible.

We plot two different aspects the nodal evolution of our Peekskill stream over the
first 100 kyr in Fig. 7. First, we plot the orbital elements of all surviving particles at
1000-year intervals; in Fig. 7 the vertical strips at these time intervals show the longitude
of ascending and descending node of all particles; in particular these particles could have
any other orbital elements (eg., a/e/i) and need not have an ascending or descending
node near 1 AU from the Sun to allow for a possible collision with Earth. We see (2
regressing as expected, with the ‘center’ of the cluster of particles taking about 40,000
years to regress 360 degrees. Although this representation allows us to see that in about
~ 40 kyr (only one precessional cycle) the stream’s nodes have sheared out to cover all
possible values, this does not necessarily indicate that all coherent character is gone as
there could be correlations between the orbital elements such that those particles with
nodal distances of ~ 1 AU are restricted to certain ranges of 2. We experimented with
simply singling out orbits with nodal distances of 0.983-1.017 (that is, between Earth’s
perihelion and aphelion distances), hypothesizing that each integrated particle could be
imagined as representing an osculating orbit with particles spread out uniformly around
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Figure 7: Two representations of the early (50,000) dynamical evolution of our “Peekskill
stream”. The vertical bars (at our 1000-year dump interval) indicate the longitudes of
ascending and descending node of all surviving particles, regardless of the heliocentric dis-
tance of that node. The individual points (which are progressively less heavily clustered)
show the ecliptic longitude (roughly day of fall) for integrated particles which actually
pass within 0.01 AU of the Earth and thus could strike the Earth; the streaming effect is
much more clearly seen here than in Fig. 8 as the nodes of the stream’s orbit occasion-
ally pass through 1 AU from the Sun. The vertical axis corresponds to the longitude of
ascending node for the 1000-year period sampling, or to the ecliptic longitude (relative to
the J2000 ecliptic) for close encounters. Note that there is a very tightly-confined clump
of close encounters near 20° at the start of the integration corresponding to the initial
node-crossing state.
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that orbit in mean anomaly and thus any nodal intersection of that orbit could result in
a collision producing a meteorite. However, perhaps having an intersecting orbit was not
enough: in principle correlations might exist which result in particles with intersecting
nodes to be confined away from the Earth. To alleviate these doubts, we have resorted to
extremely intensive logging of all close fly-bys of Earth (typical outputs are 30 Gbytes per
simulation) in order to identify the ecliptic longitudes of close encounters. The dots of Fig.
7 show the ecliptic longitude of the close encounters, where now we feel secure in saying
that these flybys could produce fireballs by a very tiny timing difference between the
integrated particle and one extremely close in parameter space. Thus, this representation
shows the distribution of day of fall from our initially tightly-confined orbital stream. It is
easy to see each node-crossing of the stream, and the gradual de-coherence of the orbital
stream’s close encounters. Tight clumping of close encounters persists for the first 50 kyr.
Fig. 8 presents the close-encounter longitudes for all three numerical integrations. The
simulations ran for 500 kyr, except for the 150 kyr Pribram integration which was stopped
sooner as it was clear that the stream was already essentially decoherent by 100 kyr. In
each case we see an initially tightly-confined state spread rapidly out so that falls would
become widely dispersed throughout the calendar year. Fig. 8 shows that by 100-200
kiloyears, the encounters of these streams, and hence the days of fall of its members, are
nearly uniformly distributed over the whole possible year. This conclusion is qualitative
(although clearly very strong) in that we have not implemented some sort of ‘cluster
finding’ algorithm which quantitatively (with an arbitrary measure of ‘concentrated’) finds
concentrations in the encounter longitudes. At the end of the integrations there is still
some mild residual non-randomness, but only at the level that falls in a given half of the
year are slightly more probable than in the other half; these concentrations do not of course
allow for tightly-correlated clusters like those being examined. Therefore, we conclude
that on time scales of < 1 million years these Earth-crossing streams become completely
decoherent in terms of a detectable concentration relative to the general background of
Earth-crossing material.

A few comments on each of the three integrations are appropriate.

Due to the high inclination, relatively deep perihelion distance ¢, and large semimajor
axis a of Pribram, this stream has relatively ‘fast’ node crossing events due to its high
precession rateand has fewer encounters per unit time than the other streams we inte-
grated. The fact that the aphelion is near Jupiter means that this stream suffers very
strong differential shear in the precession rates. Of the three streams we examined, this
is the worst candidate for an orbit which could keep a coherent character, requiring only
of order 50,000 years to decohere.

The Peekskill stream requires ~ 0.2 — 0.3 Myr before losing coherence. Its low (5
degree) inclination results in many more encounters per unit time; this is clearly not as
effective (considering the Pribram integration) as the near-presence of Jupiter for disrupt-
ing the stream-like character, but nonetheless is far below the cosmic-ray exposure age of
Peekskill itself.
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Figure 8: The longitude of encounter for all particles experiencing close encounters with
the Earth. Although the eye is drawn to what appears to be a forward precession of the
encounter longitudes, there is in fact a rapid regression. However, in one nodal precession
period, the encounter longitude advances slowly; this is more easily seen in Fig. 7
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Figure 9: The value of the D’ criterion as compared to the initial orbit for Pribram, Peek-
skill, and Innisfree. The values are initally tightly confined, but begin to lose coherence.
One can barely distinguish any sort of “stream” at about 150000 years for each.
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Innisfree’s integration is interesting near the very beginning of the simulations due to
the sharp features corresponding to a set of close passages tightly clumped in encounter
longitude, where the longitude rapidly regresses with time. This effect is caused by a
combination of factors. First, Innisfree has a high (12°) inclination and perihelion distance
q=0.983 which is just barely inside the Earth. Thus, the encounter speeds are relatively
high and confined to a well-defined longitude when a node is Earth intersecting at 1 AU.
This node regresses rapidly until it decouples. But the tight confinement means that the
encounter geometries of the particles whose paths are deflected by the Earth are similar,
and thus these objects are deflected to a new concentration in (a, e, 7) space with a different
precession period; this clump arrives back to node crossing at a slightly different time than
the main stream. Careful inspection of the integration shows the subsequent detaching of
more and more ‘sub-streams’; this collective behaviour only lasts a few hundred thousand
years before the differential shear again randomizes the nodes of the Earth-encountering
particles, again far less than Innisfree’s 27 Myr CRE age.

Because orbital similarity is determined using the D' criterion, we also plot the evolu-
tion of that criterion over time (Fig. 9). However, because the D’ criterion compares two
orbits, examining the future evolution of the stream is not clear, because some method
must be available to determine the ‘center’ of the stream. Because of the rapid deco-
herence observed we have chosen to simply pick the initial orbit for this comparison.
Thus, although the stream’s orientation precesses and so will not remain near D' = 0
as compared to the initial orbit, it should remain tightly confined around some non-zero
value if a stream is present. In Fig. 9 one sees that this is initally the case but as
these streams evolve due to secular precession the D’ values begin to spread out. The
stream-like appearance is lost on the order of hundreds of thousand years.

From these examples we conclude that the maintenance of stream-like behaviour for
the longest possible time in an Earth-crossing stream will be best for orbits which (1) have
high inclination, (2) are deeply Earth-crossing, and (3) have small semi-major axis so that
aphelia are far from Jupiter. Although we have not explored this, it is likely that only a
factor of a few in decoherence time could be gained for realistic fireball-producing orbits.
It is clear, however, that the kind of tight clumping envisioned in the literature claims
for meteorite streams (encounter longitudes confined to very much less than a month)
persists for < 1 million years for the candidate streams in question.

4 Discussion and Conclusions

We have analysed simulated fireball databases of size comparable to the current world-
wide database generated from both a collision-probability-weighted NEA modelling and
from randomization of real fireball orbits to determine the statistical signifance of evi-
dence for meteoroid streams. We find that a pair of orbits as similar as Pribram and
Neuschwanstein (measured using the D’ criterion) occur ~70% of the time by random
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chance in a fireball database consisting of a world-wide sample of 481 orbits distributed
in a (a, e, 1) distribution similar to the observed fireballs but whose other angles are ran-
domized. Even using our (probably insufficiently restrictive) fireball model based upon a
model NEA distribtuion gives a chance occurence of a D' = 0.009 pair at the 10% level.
Thus, our work shows one cannot reject the null hypothesis at even the 20 level; that is,
the existence of this pair is consistent with random chance.

Additionally, we have shown that the multiple-member streams of Halliday et al.
(1990) found via D’ clustering also do not constitute 20 departures from randomness;
random sets of fireballs show similar frequency of such clumps. We conclude that the cur-
rent level of departure from randomness in the worldwide fireball database is statistically
insignificant.

We should be clear that we are not saying that the D’ metric is suspect or non-useful.
This metric’s usefulness in the detection of cluster must simply be rigorously calibrated by
determining the false-positive rate in a given sample; Jopek et al. (1999) present such a
reliability determination for a clustering method applied to meteor orbits. Our conclusion
is that the orbital parameter space over which real meteorite-dropping fireballs come from
is so restricted that many positive hits occur by chance; so many that nearby D’ pairs or
clusters become nearly certain once the database becomes large. A clustering claim must
simply be shown to occur less frequently than 3 times in 100 to have 2-sigma evidence.
As a concrete example (Fig. 6), in an 89-fireball database a cluster of 8 fireballs all with
D' < 0.087 from some reference orbit would constitute a 3-sigma departure from random
chance (a cluster of 7 would be a borderline 20 variation), and a cluster of 16 fireballs
are required for a 20 departure in a 351-orbit database. The worldwide database has no
such features indicating a significant departure from uniformity.

Using our numerical orbital evolution calculations we find that in three stream-candidate
cases a tightly-confined stream on the fireball’s orbit became decoherent in at most a few
hundred thousands years. We thus reject the streaming hypothesis for the orbital simi-
larity of Pribram and Neuschwanstein because not only are their CRE ages both much
longer than the stream decoherence time, but they are also 36 Myr apart. They cannot
have received the majority of their exposure while in a coherent Earth-crossing stream.
We thus believe that either (i) they were exposed for millions of years before entering the
stream, perhaps because the were located on or near the surface of some non-homogenous
parent body (due to their different petrographic type), or (ii) the similarity is pure co-
incidence. The former suggestion was explored by Morbidell and Gladman (1998), but
could not explain the large difference in the exposure ages (12 versus 48 Myr). We thus
conclude that the most likely explanation is chance alone.

The reader might object that surely the fact that there is a D’ < 0.009 pair in the
recovered fireball set (of a half dozen) must surely be significant. Even though we calculate
the probability of a D' < 0.009 match with only six fireballs is of order 107 (and thus
seems signficant) we are very uncomfortable with this line of a reasoning. It is a ‘post facto’
examination of the data set where one has found a reason ‘after the fact’ to cut the data
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set in this way. Why should there be anything special about the fact that these particular
fireballs were recovered (except perhaps a mild mass bias?). To address this we asked the
question : Ifthe Earth-crossing population contains a group of meteorite-dropping objects
which have resulted in roughly one-sixth of the large recovered fireballs coming from a
single stream, what is the probability that only 6 other fireballs (identified by Spurny
et al. 2003, including Neuschwanstein) have D’ < 0.1057 We generated a new database
starting with our 351-orbit data set and added enough fireballs with D' ~ 0.01 (with
respect to Pribram) to make Pribram/Neuschwanstein matches occur about one-sixth of
the time (that is, we ‘inserted’ a tightly-correlated stream into a uniform background).
We then picked samples as before, but only randomized the angles of the ‘non-Pribram
stream particles’ to preserve a stream. Unsurprisingly, we found that almost all 351-
orbit samples (reflecting what would be in the worldwide catalogue) drawn from this
distribution had ~ 50 Pribram-like fireballs, whereas the worldwide collection has 7. We
calculated that the probability of getting less than 29 Pribram-like fireballs is 1 in a
million; the probability of getting only 7 is thus < 107%. We therefore conclude that
the postulate of a meteoroid stream near the orbit of Pribram is inconsistent with the
available information.

The most likely production method for a real meteoroid stream would be the catas-
trophic fragmentation of an asteroid already on an Earth-crossing (because the time scale
to reach an Earth-crossing orbit is likely longer than the coherence time of a stream
produced with ¢ > 1.1 AU). Once produced, the Earth-crossing stream could persist
for ~ 10° years before disruption. Actually detecting this Earth-crossing stream in the
fireball databse would require that the stream produce a sufficient number of falls to
generate a statistically-significant signal over the background; this is not simple as the
Earth-crossing meteoroid population is huge and the disrupted fragment would have to
supply ~1% of the Earth-intersecting population to give several orbit-determined fireballs
in the 351-orbit database. The meteorite-producing flux at the top of Earth’s atmosphere
is estimated by Halliday et al. (1989) to be ~30,000/year over the entire planet, a rate
which Bland et al. (1996) concludes has remained roughly constant over the last 50,000
years. Thus roughly 300 fireballs/year from a stream would be required, with a collision
of optimistically perhaps 107 /year (for a perihelion tangent to the Earth’s orbit) this
requires a stream population of ~3 billion meteoroids. An excessively optimistic estimate
would be that an original asteroid was shattered into exactly 3 billion 10-cm fragments
(big enough to give recoverable meteorites, but small enough to keep the asteroid size
managable) for an asteroid diameter of ~200 m (with a 100% packing fraction). A more
realistic mass distribution for the fragments from this collision or disruption would require
an ‘immediate precursor body’ larger by a factor of at least several; below we work with a
~ 1 km diameter estimate. The time interval between collisional catastrophic disruption
of km-scale NEAs is >1 Myr (Bottke 2004, personal communication). Catastrophic tidal
disruption due to a close terrestrial passage (Richardson et al. 1998) might be a more
effective way to disrupt a parent asteroid. Thus, while it is not impossible to imagine a
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D ~1 km asteroid with ¢ ~1 AU being dispersed within the last 10° years by collisional or
tidal action in order to provide a stream, but such a hypothesis would yield the following
situation:

1. The probability of this occuring in the last 50 kyr is low. The rate of catastrophic
tidal disruption is about 1 per 400 000 years (Bottke et al. (1998)), where we have halved
the rate to account for a recent factor of roughly 2 drop in the estimated 1-km NEA
population), and catastrophic collisional disruption of 1-km NEAs is even less frequent.

2. If we define d ~ 3 meters to be the depth to which CRE exposure can occur,
then only a fraction ~ 3d/D of the immediate precursor body would have been exposed
to cosmic ray flux before the disruption. For the unrealistically optimistic D = 200 m
this is < 3% of the volume of the asteroid, so >97% of the stream fireballs should have
CRE ages <50 kyr, in blatant conflict with reality. Halliday et al. (1987) identified this
problem for Innisfree, stating that only 8% of the Innisfree stream would be fragments
which should show any reasonable CRE exposure (with the remainder being shielded until
the recent breakup which would be needed to create the stream). Interestingly, Peekskill
shows evidence for a complex CRE history (Graf et al. 1997) with a second stage exposure
of <0.2 Myr; this is what would be expected for a near-surface ‘chunk’ of the immediate
precursor body. However, the fact that the other candidate meteorites in the candidate
Peekskill ‘stream’ are not dominantly very low (< 1 Myr), CRE age chondrites rules out
(from our point of view) any possibility that this is the result of a recent catastrophic
fragmentation.

Our conclusion is that there is as yet no compelling evidence that there is any signifi-
cant orbital correlation shown by the orbital distribution of the fireball population.
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