4.1 Correlation testing

Figure 1 shows the early Hubble diagram from the book (Figure 4.3).
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Figure 1: The early Hubble diagram for 24 galaxies.

(a) The (Bayesian) Jeffreys test. From the data provided for the example and
plotted above. it is simple to calculate the probability of the correlation coefficient p
via equations E'and 4.8, [the Jeffreys test, and we get the following picture:
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Figure 2: The Jeffreys test for correlation, assuming the bivariate Gaussian model of

equation 4.1 for the data. The ordinate is proportional to the probability of the data
being related by a correlation coefficient p. The vertical line shows the mean value of
0.807.

The mean value of p is 0.807 while the peak value is 0.831.

The correlation coefficient is clearly not zero, the value implying no correlation, or
in more truthful terms, the value implying that the ellipses characterizing the point
density contours in the x — y plane are in fact circles so that x and y are independent.
It shows us a probability distribution, so that we can answer the question: what
possibility is there that given these data, they are NOT related, ie that p = 07 Figure
2 suggests very little chance indeed.


Jasper Wall
4.1 Correlation testing

Jasper Wall


Jasper Wall
4.3

Jasper Wall


Jasper Wall


Jasper Wall
4.8,

Jasper Wall


Jasper Wall


Jasper Wall


Jasper Wall



(b) The classical Fisher test. On the way through the above, we used equation 4.3
to calculate r, the famous Pearson product moment coefficient, and an estimator of p.
The value obtained is 7 = 0.837 £ 0.062 (with the standard deviation obtained from
equation 4.9). r = 0 is the anticipated value for no correlation; and again it looks like
it is safe to conclude we have a correlation here, as zero is many multiples of 0.062
away from 0.837. The classical test invites us to transform r (via equation 4.10) to a
statistic t' = T‘\/ZN - 2)/\ﬂ1 — %) which obeys the ‘Students’ ¢ statistic with N — 2
degrees of freedom. This yields a value of t' = 7.177. We rush off to Table A2.3, look
for the line with v = 24 — 2 = 22 degrees of freedom, and find that our value of ¢ much
exceeds that required for rejecting the null hypothesis, no correlation, at a significance
level of 0.001. There is much less than 1 chance in 1000 that the correlation we observe
could have arisen by chance from a random distribution of = and y.

We can do a bootstrap test to see if we believe the results of (a), or our result in (b)
from looking up something in a table. The bootstrap test, as emphasized in Section 6.6,
is particularly easy - all we do is draw at random (with replacement) 24 pairs of (z,y)
from the tabulated 24 data pairs, and calculate a new value of r each time. The
distribution of these r-values gives us the probability distribution of r, given these
data. The calculation of r is not cpu-intensive so that we can achieve any accuracy for
the distribution we like. Figure 3 shows the distribution for 10° trials.
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Figure 3: The bootstrap test to determine the distribution in r, the Pearson product
moment coefficient, for the 24 data-pairs of the Hubble diagram in Figure 1. The
histogram shows the r-values determined in 1,000,000 trials. The value of r determined
from the data, 0.837, is shown as the extended red line, while the distance between the
blue lines indicates +20, with o calculated as in equation These 4o lines have
been placed approximately about the peak value of r in the distribution. The black
curve represents the Fisher curve (equation, the probability of getting a value of
r given that the value of p is 0.837.

We see that the distribution resembles that of the Bayesian calculation shown in Fig-
ure 2; we see that the calculated value for ¢ closely indicates the spread of the distri-
bution; and we see that the distribution matches the Fisher distribution of equation
Equite closely. This all seems self-consistent. In fact no value of r in 1,000,000 trials
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has got anywhere near zero, so we can state that our significance level is at least 10°.
And of course we could carry out any further extension we like until we find a value of
zero, and thus determine exactly the value of the significance of our result. Maybe it
is 10°, which surely must convince anybody....

Or so we might think. It is important to consider further what we have done and there
are two serious caveats.

(1) First, look at the bootstrap in the following light - make the transformation to the
t-plane and rebuild the histogram. The result is shown in Figure 4.
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Figure 4: The bootstrap test for the 24 data-pairs of the Hubble diagram in Figure 4.3.
The histogram shows the t-values calculated from the individual r values (with 22
degrees of freedom) determined in 1,000,000 trials; the extended vertical line shows
the t-value (=7.18) corresponding to the r-value (0.837) of the original data. The
red curve is the integrated t¢ distribution, and the green vertical lines indicate the
significance levels, or proportion of area in the tail of the distribution to the right of
each vertical line. The t-values at these green lines correspond to the critical values
given in Table A2.3 for 22 degrees of freedom.

The formal test then consists of comparing the position of the vertical blue line with
the positions of the green lines representing proportions of the (integral) ¢-distribution.
Our bootstrap (non-observed) values of ¢ are being compared with a distribution of
non-observed ¢ which we know from the start is incorrect (because it applies to values of
r from a zero-correlation - and we knew we had some signal.) We produce a numerical,
quantified result from this procedure and convince ourselves in this process that we
have proved a correlation exists.

Tradition says that this is satisfactory. But really the probability distributions of
Figures 2 and 3 tell us what we want to know. Indeed the bootstrap result of Figure 3
seems to settle the argument by providing the simplest and most graphic of tests.
There is no need for comparison with fictitious distributions - the bootstrap tells you
that r (and therefore p) is not zero in this case and never (well hardly ever) could be.

(2) The second caveat is the most important. All of the foregoing is modelled on
the bivariate Gaussian premise. Modern data provides very good evidence that the



Hubble diagram is not well represented by a bivariate Gaussian! Even this version of
the Hubble diagram does not really resemble a bivariate Gaussian - the scatter is too
even. The scatter in Figure 1 at the low end is boosted by Hubble’s inclusion of Local
Group objects, objects which do not represent the Hubble flow, while the scatter at
the ‘distant’ end is boosted by measurement error - and these combine to give a fairly
uniform scatter, unlike a bivariate Gaussian. However, the fact that the bootstrap
result of Figure 3 is similar to the Fisher distribution suggests that the deviation from
Gaussian is not great enough in this case to invalidate the Fisher test.

Nevertheless, to play safe a non-parametric test should be used.

(c) The Spearman rank correlation coefficient. Ranking tests for correlation
are excellent in that they don’t care about the form of the relation. They simply get
you to find the rank of each of the two variables and then examine statistically how
much the ranks of the individual (X;,Y;) pairs differ. If on average they don’t differ by
much, then a strong correlation is present. The best-known of these tests comes from
calculating the Spearman rank correlation coefficient (equation

YN(X; - Y;)?

rs=1—06 NF N

(Ranking can be done by eye for 24 variable-pairs. For larger data sets, resort to
available indexing/ranking routines, such as the pair of routines indezz.for and rank.for
of Numerical Recipes. Remember that the index of the variable is not the rank of the
variable; at least with the Numerical Recipes routines getting the rank is a two-stage
process. )

The result here is r, = 0.879
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Figure 5: The bootstrap test to detesrmine the distribution in r,, the Spearman rank
correlation coefficient, for the 24 data-pairs of the Hubble diagram in Figure 4.3. The
tall red line indicates the value of r; = 0.879 for the original 24 data-pairs.

The significance of the test is assessed in the traditional way; a high value of r in-
dicates a correlation, the level of significance depending on the number of data-pairs.
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Consulting Table A2.5 we see once again that the indicated level of significance is off
the end of the 22-degrees-of-freedom line, i.e. much smaller than 0.001.

But the same criticism as described for Figure 4 prevails with this; what are we really
saying when we make this statement? Now however we can truly call on the bootstrap
to tell us what the probabilities are. The results of 10° trials appear in Figure 5.

Never mind the tables and comparison of mismatched distributions. The bootstrap
trials in this non-parametric test tell us unequivocally that the chances of a value of
r, = 0 arising by chance from this data set is far less than 1 in 10°.

This seems the best answer we can get. We have a result that

1. ignores the form or origin of the data;
2. gives us a view of the probabilities of correlation offered by the data;

3. enables us to make a quantitative (and in this case unequivocal) judgement about
the presence of a correlation; and

4. avoids any need to consult a fictitious distribution table.

What is perhaps surprising is how robust the parametric method is, at least in terms of
the Fisher coefficient r, its bootstrap distribution, and the Jeffreys test for correlation.

There are many other ways of looking at the problem. For example note the following:

Suppose you fit a line of zero intercept (ie just a slope) assuming errors only in y. The
maximum likelihood estimate of the slope is

Z(fﬂz’yi)/ Z(l“?)

which will be large if r is large. So in the line-fitting case r becomes an indicator of a
non-zero slope.

In considering some additional and educational analysis, use formulations of Chapter 6
to produce some bivariate Gaussian distributions of differing p. Examine these with
the different approaches above. Throw in some outliers; check out robustness.

Consider in particular p = 0. If you carry out bootstrap tests, do you recover the
famous t distribution for no correlation, the basis of the significance tables for standard
correlation testing?



