4 2 Multivariate random numbers

(a) and (b). We have Gaussians of given variance and a correlation coefficient; we
have a prescription of §|4.2fo generate (z,y) pairs which are so related. Why is this
prescription right? Consider a simple application of the prescription to show why.

Take 0, = 1.0, 0y, = 1.0, and values of p = 0.1,0.5 and 0.9, so that we have a range of
correlation from bad (0.1) to good (0.9). (Note that if we have been given p and the
o’s, we know the covariance from p = cov(z,y)/o,0,; likewise if we have the covariance
and the ¢’s we know p.)

There are four steps in the prescription:
1. Focus on the case of p = 0.5; its covariance matrix is (§4.2)
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2. The eigenvectors come from the identity
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which gives eigenvalues of A to construct the two eigenvectors, the vectors that are
invariant under the transformation of the covariance matrix. From this equation we
get

z+ 0.5y = Az (3)
0.5z +y = Ay, (4)
and thus 20> =2\ +1.5=0 (5)

from which emerge the eigenvalues A\; = 0.5 and Ay = 1.5, and the eigenvectors (from
either equation (3) or (4)), are

1.0 -1.0
( 1.0 ) and( 1.0 ) (6)
These can be normalized arbitrarily; following standard practice we make them unit
length.
3. This yields the transformation matrix

(7)

o _ | 0.707 —0.707
~ 10707 0.707

4. We've done the hard part; we now simply draw random (X', Y’) Gaussian pairs
with variances

0% =Ao2=0.5 (8)

oy = Mo, = 1.5, 9)
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easily done with a routine such as gasdev from Numerical Recipes. The final stage is
to compute the (X,Y’) pairs according to

() =m ()= oo () o

Results are shown in Figure 1, centre panel.
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Figure 1: Bivariate random numbers. 1000 random numbers were drawn according
to the bivariate Gaussian prescription in which o, = 0, = 1.0 and p = 0.1 (left),
0.5 (centre) and 0.9 (right). The ellipses contour the ‘bivariate Gaussian mountain’
function described below.

Now that we have carried out the exercise and produced the diagrams, we see that
our problem is identical to that described in the Principal Component Analysis (PCA)
section of the book, § 4.5. In the above, we created an idealized correlation for which
we formed the error matrix, calculated the eigenvalues, the eigenvectors, and hence the
transpose matrix. This transpose matrix diagonalizes the error matrix, reducing its
cross-terms to zero.

With the transpose matrix to hand, we then took independent random values of
(X',Y"), scaled these with the eigenvalues to get the right total projection lengths,
and used the matrix to reinsert the cross-terms in order to get the final (correlated and
rotated) set of (X,Y).

Rather than this ‘by analogy’ explanation, a formal proof can follow from the formal
definition of Yointly Gaussian’:

Random variables X1, Xs,..., X, are said to be jointly Gaussian or to have a multi-
variate Gaussian distribution if their joint probability density function can be written
in the following format:
1 -1x7C7'x
(x) = exp 2 ; (11)
(2m)"|C]
where the vector x = X1, Xy, ..., X}, (12)



the transpose of x = x”, (13)

<> <mIH >
the covariance matrix C =| <Z1%2 > <73 > (14)
and the determinant of C = |C/|. (15)

The formal proof can be an exercise for the student; following the ethos of the book,
we refrain from presenting it here.

For the bivariate n = 2 case, the exponent of equation 11 ends up as a quadratic. If
we relabel z1 as ¢ and x5 as vy, it is in fact
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which appears as the exponent in book equation 4.1. This 2D probability function
describes the bivariate Gaussian ‘mountain’; and the contours describing this function
are a concentric set of ellipses. It is these contours which appear in Figure 1 above.

(c) Calculations of the error matrices for the 1000 (X,Y") points of each of the three
values of p yields

0.971 0.112 1.060 0.478 1.023 0.943 (17)
0.112 1.028 0.478 0.901 0.943 1.053
to be compared with (see equation 1)
1.000 0.100 1.000 0.500 1.000 0.900 (18)
0.100 1.000 | 0.500 1.000 | 0.900 1.000 |
p=0.1 p=0.5 p=0.9

We may safely assume that we have done it right; the differences are due to scatter.
Further work:

(1) Try simulations of 10° points to ensure that the above matrices converge to exactly
the advertised values.

(2) Multiply out the matrices in the exponent of equation 11 for the bivariate case to
check out equation 16.

(3) The eigenvalues are very different for each value of p above, but eigenvectors and
the transpose matrices (equation 10) are the same. Consider why this is the case;
what would make the transpose matrices differ? Generate some examples of scatter
plots producing/using different transpose matrices. How does the correlation coefficient
relate to the slope of the correlation?

(4) Look at the scatter about the outer contours of the rightmost member of Figure 1,
that for the highest correlation. There seems to be less scatter outside the minor axis
of the ellipse than the major. Why?



(5) For case in which p is significantly greater that zero, the scatter in X appears
diminished from the o, = 1.0 with which it started. Why, where has it gone? Try
producing the diagram with p = 1, starting with lots of scatter in X and Y. Is this
result what you expected? How can the perfect straight line with zero apparent scatter
be right?

Finally note that the deficiencies of the bivariate Gaussian as a model to explore
correlation are exposed by these considerations yet again. (See exercise 4.1 and its
solution.) If there is some scatter due to measurement error, but in fact there is a
perfect correlation between underlying x and y, the classical correlation tests will fail
to reveal it. Only a straight line yields p = 1. Further, it is important to emphasize
that in measurement, frequently x variable is not randomly selected - and in this case
the model is entirely inappropriate. The message from exercise 4.1 and this exercise
is - ranking (non-parametric) tests should be favoured in looking for correlations, and
probabilities can be assessed for these tests by bootstrap or jackknife procedures.



