5.7 Gram-Charlier

A normalized form for the assumed distribution of the data \(x \) is

\[
f(x, \sigma, \alpha) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \left(1 + \alpha \left(1 - \left(\frac{x}{\sigma} \right)^2 \right) \right)
\]

where \(\sigma \) is the standard deviation of the basic Gaussian and \(\alpha \) measures the contribution of the Gram-Charlier term.

For a set of \(N \) data \(X_i \) the likelihood function is a product, so that

\[
\text{prob}(\alpha, \sigma | X_i) \propto \prod_i f(X_i, \sigma, \alpha).
\]

Because \(f \) is a sum, the product gets very complicated. To investigate further, assume \(\alpha << 1 \) and keep only terms linear in the product. This gives

\[
\text{prob}(\alpha, \sigma | X_i) \propto \frac{1}{(\sqrt{2\pi}\sigma)^N} \left(e^{-\sum_i x_i^2} + \alpha \sum_k (1 - X_k^2) e^{-\sum_{i \neq k} x_i^2} \right) \text{prob}(\alpha)\text{prob}(\sigma)
\]

Marginalizing out \(\alpha \) can be more or less complicated to taste – the prior is open to debate. Taking a uniform distribution between 0 and \(t \) for \(\alpha \), so \(\text{prob}(\alpha) = 1/t \), the relevant factors are simple, giving

\[
\text{prob}(\sigma | X_i) \propto \left(e^{-\sum_i x_i^2} + \frac{t}{2} \sum_k (1 - X_k^2) e^{-\sum_{i \neq k} x_i^2} \right) \text{prob}(\sigma).
\]

The Jeffreys prior is appropriate for \(\text{prob}(\sigma) \). Graphing the distribution for small sets of Gaussian data, taking \(t \approx 0.1 \), we see a definite tendency for smaller values of the most likely \(\sigma \) than we get for \(\alpha = 0 \). The extra term in the Gram-Charlier expansion has a tendency to absorb some of the spread in the data.

The odds on including the Gram-Charlier term are given by the ratio

\[
\mathcal{O} = \frac{\int \text{prob}(\sigma | X_i, \text{finite } \alpha) \, d\sigma}{\int \text{prob}(\sigma | X_i, \alpha = 0) \, d\sigma}
\]

which is the ratio of the weights of evidence. These integrations can be done numerically. For smallish sets of data \((N \approx 30) \) we find typical odds of about 10 to 1 (assuming equal prior probabilities for the two hypotheses) in favour of including the term. While the effect on the distribution of small values of \(\alpha \) may seem limited, it can affect significances in the tails by a per cent. or so.