5.3 t-test and outliers

The data for this example are arranged as follows. There are 200 sets of 10 random numbers, corresponding to 10% contamination by the wide Gaussian; followed by another 200 sets, with 20% contamination, and so on up to 50%. This gives 100 sets of pairs of 10 to compare. One way of seeing the effect of the outliers is to look at the distribution of t as a function of contamination, and sketch significance levels on the graphs from the tables of t. The next step up is to calculate for each dataset the significance level of some fixed presumed difference in the means as a function of contamination. To do this you need to be able to integrate the t-distribution to get the area above the value of t that turns up for each dataset. Either way, you can see that the test gets less sensitive, as you would expect.

![Figure 1: Distribution of one-tailed significance values for a difference in location of 1 unit. Black, no intrinsic difference, no outliers; red, 30% outliers but no intrinsic difference – sensitivity is reduced; green, 0.5 unit intrinsic difference and no outliers.](image)

The Bayesian approach could, for example, just look at the chance that $\mu_1 - \mu_2$ exceeds a certain value, using the posterior distribution of the difference of means given t. To check what happens when there is a real difference in the means, use the data in the other data file, arranged as described before.