5.6 Several datasets, one test

The significance level \(p \) is an integral of a probability distribution function \(f \):

\[
\int_{\alpha}^{\infty} f(x) \, dx = p
\]

where \(\alpha \) is a critical value. For a particular set of data, \(\alpha \) is a statistic and \(p \) is random. Applying the change of variable rule

\[
\text{prob}(\alpha) \, d\alpha = \text{prob}(p) \, dp
\]

and remembering that \(f \) is the probability distribution of \(\alpha \), it follows that \(p \) is uniformly distributed between zero and one. (Notice this will not be true if the null hypothesis isn’t true, as then \(f \) will not be the probability distribution of \(\alpha \).)

Now

\[
\log W = \sum_{i=1}^{n} \log p_i
\]

is a sum of \(n \) random variables; \(\log p_i = u \) is distributed like \(e^{-u} \) (for \(u < 0 \)).

To find the distribution of the sum, we need the Fourier transform of this; it is proportional to \(1/(k-i) \). The convolution theorem tells us that a sum of \(n \) terms will have a transform like \(1/(k-i)^n \). This transform can be inverted for integer \(n \) (see tables, or the indispensable MATHEMATICA) and yields the required distribution of \(x = -\log W \). This is

\[
\frac{1}{\Gamma(n)} x^{n-1} e^{-x}.
\]

The results on the mean and variance follow easily from direct integrations. To see the Gaussian form, expand the log of the distribution function in a Taylor series around \(n \), to second order.