
6.9 Marginalization

There is some sample data for this problem, a “spectrum” 100 samples long containing a
Gaussian line and a variable background.
I chose a model of the form

m(x) = α exp

(

−(x − µ)2

2σ2

)

+ β + γx

and assumed Gaussian residuals.
The first thing to notice is that no-one has told us what the noise level is, and without
this it seems that we cannot set up the problem.
There are various approaches; I will take the more familiar ones first.
Ideally, we would repeat the measurement. In this exercise, we can’t do that, and in real
life it is often not possible either.
We can try to estimate the noise level from what looks like a flat bit of the background.
This is not very easy because, just as also often happens in real life, there doesn’t seem
to be anywhere that is very flat.
A common approach (the one we will use in this example) is to assume that we have the
correct model, and then derive the noise level as the standard deviation of the residuals
(data - model).
This is a useful pragmatic technique, but of course it rules out any model testing – it
assumes the model is right. If we have the wrong model, we will just infer a large noise
level and the model will still be probable, formally. Also, the standard deviation which
we put into our likelihood function is now a statistic – it is not a known parameter. To
analyze this properly is involved. We may escape by asserting (hoping?) that we have
enough data so that the noise level is well-determined; and by hoping further that in
this limit we can use the asymptotic Gaussian form of the likelihood function, which
greatly simplifies analysis. There are some substantial compromises here; we will have
to abandon priors, because we are equating the posterior probability distribution to the
likelihood alone.
Now going through the full panoply of deriving a distribution function is rather involved,
and it is a indeed lot easier to use the asymptotic limit of the likelihood. That is, we
find the values of the free parameters (α, µ, σ, β, γ) using a least-squares minimization
algorithm.
Note that all of this will assume that the residuals are statistically independent from pixel
to pixel. This means we can just multiply terms together to get the likelihood.
Below is the result of this fit; the fitted function is

−9.54 + +0.18x + 115.12 exp
(
−0.01945(−29.94 + x)2

)

I used MATHEMATICA’s routine NonlinearFit to get this answer. Like most such rou-
tines, it can be persuaded to tell you the Hessian matrix at the minimum, which is what

1

Jasper Wall
6.6 Marginalization

Jasper Wall




20 40 60 80 100

-50

-25

25

50

75

100

125

Figure 1: The least-squares fit of a Gaussian line to the data.

we want to get the covariance matrix of the parameters in the asymptotic approximation
that they are distributed as a multivariate Gaussian. Note that we also have to put in
an estimate of the noise level, defined as the standard deviation of the residuals. This
matrix is (with rows and columns ordered α, µ, σ, β, γ –

C =





77.91 −0.08157 −1.637 −11.7 0.1292
−0.08157 0.1897 −0.007184 0.238 −0.004098
−1.637 −0.007184 0.2301 −1.031 0.01138
−11.7 0.238 −1.031 27.83 −0.377
0.1292 −0.004098 0.01138 −0.377 0.00649




.

It is now extremely easy to marginalize out baseline parameters; we have a Gaussian
distribution for the vector α, µ, σ, β, γ that is described fully by C. The covariance matrix
for C ′, which describes the multivariate Gaussian distribution of α, µ, σ, is just the original
matrix C with the rows and columns deleted that correspond to β, γ. The integrations can
be done analytically; the file jaynes appendix.ps contains most of the details necessary
for a proof. (This is part of the on-line version of Jaynes’ last book; it did not appear in
the printed version, perhaps because Jaynes does not seem to have realized how simple
an answer he had almost proved.)
We therefore have

C ′ =




77.91 −0.08157 −1.637

−0.08157 0.1897 −0.007184
−1.637 −0.007184 0.2301



 .

The correlation coefficient between height and width is about 0.39, and the standard
deviation on the height, marginalizing out width and position, is

√
77.91; and similarly

for the other variables.
All of this (the machinery, if not the interpretation of the results) is standard least-squares
theory, and is described lucidly and fully in Numerical Recipes.
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A specifically Bayesian ingredient is to use a prior to get around the problem of “not
knowing” the noise level. Assuming still that we have Gaussian residuals, with standard
deviation ξ (don’t confuse this with the standard deviation of the line!), each term in the
likelihood product is

1√
2πσ

exp

(

−(Yi − m(Xi))2

2ξ2

)

where the Yi are the data.
As usual, we can make the likelihood

L(α, µ, σ, β, γ, ξ|data)

which now includes the noise level.
Suppose we use the Jeffreys prior prob(ξ) ∝ 1/ξ, and marginalize over ξ – in other words,
average over the range of (prior) possibilities for ξ. The posterior probability is then
proportional to

∫ ∞

0

dξ

ξ
L(α, µ, σ, β, γ, ξ|data).

Our likelihood may appear formidable, but from the point of view of integrating over ξ it
is simply of the form

1

ξn+1
exp

(

−
∑

i(Yi − m(Xi))2

2ξ2

)

and its integral, as above, is proportional to
(

1
∑

i(Yi − m(Xi))2

)n/2

.

For small amounts of data (small n) this is where the analysis would stop, with an exact
form of the posterior distribution of the fitting parameters. In our case, for large n, we can
go further. If m is linear in the parameters a, b . . . this is a (multivariate) t-distribution;
and for n large, the t-distribution is close to a Gaussian. If we have enough data, we will
only be interested in small ranges of the parameters (which will be well-determined) so a
linear approximation will suffice. This gets us back to our original approximation, which
is that the parameters have a multivariate Gaussian distribution. Intuitively this is right;
as suggested before, if we have “enough” data, then we ought to be able to estimate the
noise level from the data.
However, we have gained something - we can compare models (various m). Because we
have put in a prior for the noise level ξ, not all noise levels are equally acceptable. It
follows that we can compare various models in the standard Bayesian way, using the Bayes
factor. Some caution is needed with the normalization if you use the Jeffreys prior – see
the Errata.
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