
Exercise 7.6 Bayes factor

A very common example of the issues around model complexity is given by
the simple polynomial fit : adding another term to a polynomial often gives
a better fit (smaller chi - square per degree of freedom) but introduces an
additional parameter.Use some random data (say, 20 numbers drawn from
a Gaussian distribution) and the Bayes factor method to examine the odds
in favour of adding one more polynomial term. Test that the Laplace ap-
proximation can be used to avoid a multidimensional numerical integration

Solution

Let’s make this exercise fairly simple by assuming we are going to do a
least-squares fit of the polynomials, assuming the residuals are Gaussian.
Because the polynomials are linear in the coefficients we are looking for, it
follows that the Laplace approximation will be close to exact. The outline
of the reasoning is as follows.

Define the polynomial we are going to fit as

p(x,!a) =
N
∑

i=1

aix
i−1 (1)

The Laplace approximation results from a Taylor series expansion of the
logarithm of the likelihood function to second order. A single term in the
likelihood, at the k-th data value yk, is proportional to

exp

[

−
(yk − p(xk,!a)2

2σ2

]

(2)

as usual, in which the standard deviation in the data is σ. The total log
likelihood then a summation over the M data values

lnL =
1

2σ2

M
∑

k=1

(yk − p(xk,!a)
2 (3)

to within an additive constant that doesn’t matter here.
Making a Taylor series expansion around the maximum likelihood (taken

as a function of the parameters !a) we find that any higher order derivatives
than

∂2 lnL
∂ai∂ak
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will be zero because of the linearity of the function p in the as. So, the
expansion to second order in the parameters in exact, and it follows that
the likelihood function is exactly Gaussian in the as. This is the Laplace
“approximation”.

This is not quite enough in a Bayesian context, where we would like to
apply the Laplace approximation to the posterior probability distribution:
this allows us to integrate easily to get the Bayes factors. The posterior is
of the form

likelihood(!a)× priors(!a)

and, as we have just seen, the first term is exactly Gaussian for the
assumptions we have made. The width of this Gaussian will of course de-
pend on the noise level in the data. If the priors are flat and significantly
wider than the Gaussian, then the evidence calculated from the Laplace
approximation should be pretty good.

Suppose for instance that the priors on the parameters are uniform, over
some width for each parameter ak of wk. If we are in a situation where we
expect the data to affect our prior beliefs materially, then obviously we must
have each wk appreciably larger than the width of the likelihood function, or
else our prior opinions could not be affected much by the data. In this case,
the cut-offs in the uniform distributions assumed for the priors cannot affect
the integration over the likelihood function very much and so Bayes factors,
calculated from the Laplace approximation, must be good approximations.

The Laplace approximation need not be a good one; Figure 6.5 in the
text shows an example where the approximation is not good in detail. In
this case the model is not linear in the parameters although a Gaussian
distribution of residuals was still assumed.

On the basis of this analysis, we will assume that the Laplace approxi-
mation is sufficient for the purposes of this example. In the next example
we will do similar calculations but use numerical MCMC methods.

The solution then involves the following steps.

1. Generation of some simulated data. Two realizations are given in the
data files for this example. The standard deviation on each data point
is σ = 0.1.

2. Choice of fitting function. A cubic and a quartic polynomial were
used, as in Equation 1.

3. Statistics and priors. The residuals are assumed to be Gaussian, so
that the likelihood function is given by Equation 3. The priors are
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assumed to be sufficiently diffuse for the likelihood to be a good ap-
proximation to the posterior probability distribution; we will return
to this point later.

4. The maximum of the likelihood is found numerically by a Newton-
Raphson method, and the maximum likelihood estimates of the poly-
nomial coefficients are

(cubic) 0.188683, -0.0124804, 0.00402867, -0.000204107

(quartic) 0.363918, -0.149563, 0.0317681, -0.00222427, 0.0000480991

(A matrix inversion method would also work: see Press et al., Numer-

ical Recipes.)

From these we can calculate the value of the maximum likelihood Lmax.
Equation 3 gives the formula to within an additive constant, which is
the same for both our polynomial models and so can be ignored. (It
is the product of the normalizing factors of each of the terms of the
form shown in Equation 2.)

5. The Bayes Factor. For either polynomial, the Bayes factor is of the
form

∫ ∞

−∞
L(!a)pr(!a) d!a

and, as discussed, we will ignore the priors pr in this integral (al-
though the numerical normalizing factors for the priors will need to
be accounted for). The Laplace approximation to the Bayes factor is
then

(2π)N/2

√

|H|
Lmax. (4)

H, the Hessian matrix or matrix of second derivatives of lnL, contains
some formidable numbers: this is why high-order polynomial fitting by
least squares requires some care – again, see Numerical Recipes. This
example is for the cubic case. Note it depends only on the values of the
independent variable (x) that occur in the data, not on the dependent
variable or the parameters – this is because we have a linear least
squares model.
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H =
1

σ2















20 210 2870 44100 722666
210 2870 44100 722666 12333300
2870 44100 722666 12333300 216455810
44100 722666 12333300 216455810 3877286700
722666 12333300 216455810 3877286700 70540730666















The ratio of the terms given in 4, computed for the cubic and quartic
case, is the Bayes factor, except for the priors. If the priors on the
parameters are the same in the cubic and quartic cases, then all of
their normalizing factors cancel out except for the normalizing factor
associated with the quartic term, which does not appear in the cubic
model at all. We have assumed that the priors on the polynomial
coefficients ak are uniformly distributed with widths wk, so the nor-
malizing factor for the prior on the quartic coefficient a5 is 1/w5. The
Bayes factor is therefore

B = w5

(2π)4/2√
|Hcubic|

Lmax,cubic

(2π)5/2√
|Hquartic|

Lmax,quartic

.

6. Results. For the two datasets given, the values of the Bayes factor are

0.9 × 104 w5

1
12.6 × 104 w5.

We see that the prior on the quartic term is crucial to the result.
Now the priors are specific to the problem to hand, but for the present
example we might make this argument. The quartic term is a5x4. The
range of the data is ±10 and the dependent variable gets no bigger
than 1, so a priori we have a5104 < 1, meaning that a5 is uniformly
distributed within |a5| < 10−4. This (rough) argument tells us that
w5 $ 10−4. Assuming this value, we find then that the odds on the
cubic fit for our first example (Figure 1) are 0.9 to 1, and for the second
example (Figure 2), the odds on the quartic are 12.6 to 1. These are
not large odds either way, which is what one would expect from rather
structureless data, but they are in the right sense in each case.
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Figure 1: Simulated data with cubic and quartic fits shown. The fits are
very similar and the odds are weakly in favour of the simpler model.
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Figure 2: Simulated data with cubic and quartic fits shown. The fits are
different, with the quartic taking up more of the variation in the data.
Despite being a more complex model the odds are mildly in its favour.
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The key role of the prior on the extra (quartic) parameter is very
instructive. This prior largely determines the Ockham factor (the de-
terminant of the Hessian matrix also plays a role).
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