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Figure 1: Simulated data

7.7 Markov-chain Monte Carlo

Extend the previous exercise to compute the actual posterior probabilities
for three possible polynomials from a constant through to a quadratic. In
this case the evidence will have to be calculated: use a MCMC method to
compute the evidence by a thermodynamic integration.

Solution

The data are in the file for this example, and are plotted in Figure 1.
We will model these data on the assumption that they are normally

distributed around the fitted model (which is a polynomial P (a, x)). The
as are the polynomial coefficients and x is the independent variable. The
likelihood function, for the data values Yi at a series of abscissae Xi, is as
usual

lnL(a) = −
1

2σ2

∑

i

(Yi − P (a,Xi))
2 + constants

Attributing a prior is a difficult problem for our vaguely-defined problem
involving polynomials of unknown order. One possibility is the following.

For a problem like this one that is linear in the parameters a, the Hessian
matrix

∂2 lnL
∂ai∂aj
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depends only on the Xi, not the unknown as or the noise-affected Yi. The
inverse of the Hessian is a covariance matrix whose diagonal elements give
the variance in the estimates of the coefficients a. For example, the inverse
Hessian for the quadratic case (3 coefficients), for the current dataset, is







0.00915625 0 −0.000625
0 0.000484848 0

−0.000625 0 0.0000757576






.

The prior we will take on the coefficients will be Gaussian, with the
standard deviation on each coefficient (denoted ξ) being twice the square
root of the corresponding diagonal elements, above:

{0.191377, 0.0440386, 0.0174078}.

The same arguments apply to other orders of polynomial to get priors
on the coefficients.

In general then the log of the posterior probability (likelihood × prior)
is

lnP = −
1

2σ2

∑

i

(Yi − P (a,Xi))
2 −

1

2

∑

j

a2j
2ξ2j

+ constants.

The maximum of the posterior gives the estimate of the polynomial
coefficients. We consider polynomials of order zero to 3. If a1 is the constant
term, a2 the coefficient of the linear term, and so on, the maximum posterior
estimates are

a1 = −0.139229

a1, a2 = −0.139229, 0.0118769

a1, a2, a3 = −0.172144, 0.0118769, 0.00204946

a1, a2, a3, a4 = −0.172144,−0.0484979, 0.00204946, 0.00444675.

The fits to the data for the various cases are in Figure 2.
To calculate the posterior probability of each of these models, we need to

integrate the posterior function P over the parameters a, and we do this by
building a MCMC chain on the posteriors P. In fact, to do a thermodynamic
integration, we need to build a series of chains built on the modified function
Lγ × prior where γ is the “inverse temperature”.
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Figure 2: Fits to data

3



As noted in the previous example, because P is Gaussian we can do the
integrations analytically by Laplace’s method. However as an exercise we
do this by MCMC and have a useful check from the analytical result.

We will assume incidentally that each of the models is a priori equally
probable.

Constructing the chains and doing the integrations follows closely the
example in the text, with a few changes.

We start creating the chains with the γ = 0 case. The starting point for
the chain is the maximum posterior estimate for the as, perturbed randomly
in each co-ordinate by the standard deviation in each coefficient, as given
by the diagonal elements of the inverse Hessian (as above). The chains were
400000 repetitions long, and the final value of each chain was used as the
starting point for the next value of γ. Chains were thinned to every 100th
value so the chains used for the integrations were 4000 long.

The detail of the proposal distribution needs a little attention for this
exercise. Recall that the proposal effects a jump in each coefficient, cycling
through the set of coefficients (three for a quadratic fit and so on). Now the
posterior is much narrower in some coefficients than others, so it makes sense
to use the diagonals of the inverse Hessian (above) to define the size of the
jumps in each co-ordinate. This greatly increases the number of accepted
jumps.

Another improvement results from noticing that the inverse Hessian is
not diagonal, so that jumps along co-ordinate axes are not along the axes
of symmetry of the posterior distribution. Working in the principal axes of
the inverse Hessian is the solution: the direction of the jumps is fixed by
the eigenvectors of the inverse Hessian, and the size of the jumps is fixed
by the associated eigenvalues. This is particularly useful when there are
correlations between the estimates of the coefficients, so that the posterior
distribution is elliptical and not aligned with the coefficient co-ordinate axes.

two quality checks have to be made on any string of random numbers
generated by MCMC. One is that successive numbers are more or less in-
dependent; this is not vital for the numerical integrations we are doing,
but it is a waste of computation to use numbers that are not independent.
Checks of the power spectra show “white” spectra at γ = 1, although by
γ = 0 the spectra are noticeably pink. This reflects the greater width of
the target function as γ gets smaller – ideally one would adjust the proposal
distribution to make it wider for smaller γ.

Of more importance is the requirement for “burn-in” to have occurred, as
otherwise the target distribution is not properly sampled by the numbers in
the chain. A simple check is to look at the standard deviation of the numbers
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Figure 3: The expectation 〈lnL〉γ as a function of γ.

in the chain (say, 100 contiguous numbers) as a function of position in the
chain. If this standard deviation is not evolving then either the chain is stuck
(in which case the standard deviations will make no sense) or else burn-in
has occurred. For the chains in this example burn-in seems to occur quickly,
which is probably a result of having a well-tuned proposal distribution.

The values of γ to use need some attention. For our example (where
the posterior is actually Gaussian) it can be shown that the trend of the
key quantity (defined in the text) 〈lnL〉γ is ∼ 1/γ, with 〈lnL〉0 being finite.
What this means is that much of the change in 〈lnL〉γ happens at small γ.
To capture this, our calculations were made from γ = 0.01 with steps in γ
of a factor of

√
2. Values for γ = 0 and γ = 1 were also computed.

Figure 3 gives an example for the quadratic (three coefficients) case.
For this example, a numerical integration of the data in the plot gives a

value for the integral of the posterior, denoted E3, of 0.000162. This is the
evidence for a quadratic polynomial model. A analytic integration of the
posterior (using the Laplace approximation, exact in this case) shows that
this is correct to within 3%.

Here are all the results.

E1 = 0.000685

E2 = 0.000361

E3 = 0.000162
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E4 = 0.000089.

It is worth trying to calculate the evidence for the cubic case by a brute-
force numerical integration: it is surprisingly difficult to get the right answer,
reflecting the “curse of dimensionality.”

From these we can calculate immediately the probability α of the con-
stant, linear, quadratic and cubic models:

α1 = 0.526

α2 = 0.277

α3 = 0.127

α4 = 0.070.

The constant model is the most probable.
It’s interesting to look at a classical model-fitting approach with χ2. We

can get the minimum χ2 from each model by maximizing the likelihood (NB
no prior here!). From this we get the standard p-value, the probability of
the residuals from the fit arising by chance - given the model. The degree
of the χ2 distribution we need to compute this is the number of degrees of
freedom, the number of data points - the number of parameters.

We get

χ2
1 = 11.44

χ2
2 = 10.99

χ2
3 = 10.59

χ2
4 = 7.56.

The p-values take some account of the “over-fitting” allowed by having
many parameters, via the degrees of freedom in the calculation.

p1 = 0.24

p2 = 0.20

p3 = 0.16

p4 = 0.27.

If we were stuck in a classical world, we might pick the cubic model: the
deviations of the data from the model are “more probable” than for other
models. The pitfalls of this approach should be apparent by this stage of
the book. For instance, the ps do not sum to unity (nor should they).
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