
7.8 Consistency of Observations Refer to Press’s paper to derive the formula quoted
in the text for the probability of a given observation being ‘good’.

Since Press’ paper is part of a book that isn’t necessarily widely available, here are are
some details of the solution. The notation in our Chapter 7 is used.
The key notion is that observations are either “good” (are drawn from a Gaussian which
has the quoted standard deviation) or “bad” (drawn from a Gaussian which has some
other, bigger, standard deviation than the nominal or quoted one). All of these Gaussians
have the same mean µw, which is what we want to know. The probability of an observation
being good is p and this has some prior probability distribution prob(p).
We proceed in the standard way using Bayes’ theorem. The posterior probability distri-
bution of µw and p is (assuming we have N observations in total):

probability of the data, given µw and p and that a specific set n of them are are “good”
and N − n are “bad”
×
probability that n are “good” and N − n are “bad”,
×
the priors on µw and p,
summed over all the possible permutations.

The probability that n are “good” and N − n are “bad” is just

pn(1− p)N−n

There is no binomial coefficient here because we are dealing with distinguishable cases –
it matters which of the observations are labelled “good” or “bad”. So we have to deal
with all of the permutations of possibly “good” or ”bad” observations.
If we simply write down the general likelihood term it is pretty obscure what is going on,
because of the multitude of distinguishable possibilities. Let’s take a simpler case, N = 3,
and for brevity let’s denote the probability of the i-th datum (given that it is good) by
gi. So g is an abbreviation for

prob(Xi|µw, σ)

as in Equation 7.41 in the book.
Similarly, g′i the probability of the i-th datum in the case where the measurement is “bad”
and a bigger standard deviation applies than the nominal one.
The term in the posterior involving all the permutations is this one:

probability of the data, given µw and p and that n are “good” and N − n are “bad” ×
probability that n are “good” and N − n are “bad”
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and spelling out all the permutations, it looks like this.

g1g2g3p
3

+

g′1g2g3p
2(1− p) + g1g

′
2g3p

2(1− p) + g1g2g
′
3p

2(1− p)

+

g′1g
′
2g3p(1− p)2 + g1g

′
2g

′
3p(1− p)2 + g′1g2g

′
3p(1− p)2

+

g′1g
′
2g

′
3(1− p)3.

(1)

Now this definitely looks like (Ap+B(1− p))3 for some A and B, and playing with it for
a bit it’s not hard to see that Equation (1) factorizes to

(g1p+ g′1(1− p))(g2p+ g′2(1− p))(g3p+ g′3(1− p)).

This would work for any N , although getting increasingly messy, so the book’s 7.41 is
established; we just need to remember that we also have to multiply by the priors on p
and µw and we have 7.41.
If this factorization seems non-obvious, take heart: Press confesses in his article that he
didn’t see it at first either.

Now to the question, the probability that a particular observation, say the kth, is “good”.
This means we want

probability that k is good, others unspecified, given the data, p, and µw – which from
Bayes’ Theorem is going to be proportional to

(probability of the data, given µw and p and that the kth is good, others unspecified
×
probability the kth is good, others unspecified
×
the priors on µw and p)
summed over all the possible permutations in which the kth is good, others unspecified
marginalized (integrated) over p and µw.

For our example, N = 3, let’s take k = 1. Then the sum over the various permutations
looks like this:

(g1p)g2g3p
2 +

2



(g1p)(g
′
2g3p(1− p) + g2g

′
3p(1− p)) +

(g1p)((g
′
2g

′
3p

3)(1− p)2). (2)

The (g1p) term turns up in each case because it is the probability of the first datum
being drawn from a “good” distribution, multiplied by the probability (recall this is a
parameter, with a prior) that an observation is good. This factorizes as before:

(g1p)(g2p+ g′2(1− p))(g3p+ g′3(1− p)) (3)

which is the “ancillary likelihood” L1 defined just after Equation 7.43 of Chapter 7.
We therefore have, for the case we are considering,

prob(observation 1 is good, others unspecified) ∝
∫
dp dµw L1 × priors on p, µw

We get the required normalizing factor from noting that

prob(Observation 1 is good, others unspecified) +

prob(Observation 1 is bad, others unspecified) = 1

In our N = 3 example, the first term in this will contain

(g1p)(g2p+ g′2(1− p))(g3p+ g′3(1− p))

and the second will contain

(g′1(1− p))(g2p+ g′2(1− p))(g3p+ g′3(1− p))

so that the sum is just the quantity L defined in 7.41: the result we want, 7.43, follows
immediately. While the derivation has proceeded for specific N , this is just to make the
key factorization, the step from Equation (2) to Equation (3), more obvious.
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