
7.6 Error Estimates

In this example, we assume that you have successfully set up a simulation that can produce
“surveys” that match the data provided for this exercise (the same, in fact, as for Exercise
7.5). Hints on how to do this are given in the solution to that exercise.
Having produced a luminosity function, there are three ways to go to estimate errors.
The simplest is just to assume that the fractiona1 error (one standard deviation) in the
luminosity function is 1/

√
N , where N is the number of objects in the bin of interest.

This is cheap and cheerful, but fairly rough.
The second method is to run a full Monte Carlo simulation, making many surveys of the
same size as the one you have. Here the assumption is that you have a good enough idea
of the underlying luminosity function for the error estimates to be useful. In our case, of
course, we know it exactly, so this method provides a benchmark to check other methods.
Finally, we can try a bootstrap; sample with replacement from the one survey you actually
have.
Below are the results, for the data provided for this exercise. The Monte Carlo simulation
generated 800 surveys, as did the bootstrap. The Monte Carlo is much slower than the
bootstrap, because of the difficulties in drawing the required random numbers (see solution
for 7.5). The numbers quoted are standard deviation of estimates in bin i, divided by the
median of the estimates in bin i. For the simple method, we just quote 1/

√
N , which out

to be comparable.
log power

√
n Monte Carlo bootstrap

−0.75 1. ∞ 0.73
−0.25 0.58 0.56 0.49
0.25 0.33 0.44 0.57
0.75 0.14 0.42 0.50
1.25 0.10 0.42 0.51
1.75 0.18 0.49 0.55
2.25 0.58 0.95 0.93

A couple of points emerge. First, the Monte Carlo and bootstrap agree quite well, with
the 1/

√
N method being systematically low. Second, there is the bizarre ∞ – what does

this mean?
The problem is that, in the high and low bins, there are very few objects and in many
realization of the Monte Carlo simulation, there are none. This gives a very peculiar
distribution of estimates – see Figure 1. In the bottom bin, the median estimate is
actually zero for the Monte Carlo simulation. It isn’t zero for the bootstrap, but there is
the same detached peak at zero.
This shows that we need to be very careful of what sort of error estimates we quote. In
other bins, the distributions are very asymmetrical as well (although not with detached
peaks). The text quoted an interquartile range for the error – this is better than a standard
deviation, but still misleading in some cases.

1

Jasper Wall
8.6 Error estimates

Jasper Wall


Jasper Wall
8.5).

Jasper Wall


Jasper Wall
8.5).

Jasper Wall




0.1 0.2 0.3 0.4 0.5 0.6 0.7
Log power

0
50

100
150
200
250

N
um

be
ri

n
bi

n

Figure 1: Distribution of estimates of the normalized density in the lowest power bin of
the simulation, from 800 bootstrap repetitions. The large number of zero detections is a
warning flag!

One way out is to work with percentiles of the distribution of estimates. In Figure 2 are
shown error bars which extend from the 25% point to the 75% point. As we see, the
error estimates are in accord and the agreement with the theoretical curve is good. The
possibility of zero space density in the bottom bin is correctly captured.
One remaining difficulty is not shown in Figure 2, but should be apparent in your data -
the estimate in the top bin is not very good. This is because the luminosity function is
dropping away so steeply that binning inevitably introduces a lot of bias.

!0.5 0 0.5 1 1.5 2
log power

0.001

0.005
0.01

0.05
0.1

0.5
1

no
rm

al
iz

ed
de

ns
ity

Figure 2: Error bars joining 25% and 75% points of the distributions of density, at each
power level, for Monte Carlo (black) and bootstrap (red).

2


