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We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in
the context of the standard cosmological model, in which we are now entering a state of endless
accelerated expansion. The mean temperature will simply decrease until it reaches the effective
temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy.
However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power
spectrum will for the most part simply project to smaller scales, as the comoving distance to last
scattering increases, although there will also be a dramatic increase in the integrated Sachs-Wolfe
contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to
Thomson scattering. We introduce a correlation function relating the sky maps at two times and the
closely related power spectrum of the difference map. We compute the evolution both analytically
and numerically, and present simulated future sky maps.
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I. INTRODUCTION

The Cosmic Microwave Background (CMB) radiation
provides us with a vital link to the epoch before the
formation of distinct structures, when fluctuations were
still linear and carried in a very clean way information
about their origin, presumably during a phase of infla-
tion. The simple dynamics of the generation and prop-
agation of CMB anisotropies (see e.g. Refs. [1, 2, 3] and
references therein) depends on a handful of cosmological
parameters, Pi, such as the Hubble constant, the mat-
ter density, and spatial curvature, in addition to the ini-
tial conditions set through inflation. These dependencies
have been thoroughly investigated over the past couple of
decades and form the basis for estimating the parameters
from the observed anisotropy spectrum of the CMB.

However, there is one dimension in the parameter space
of the CMB that has received little explicit attention. For
fixed matter content and curvature of the Universe today,
we still have the freedom to evolve the CMB anisotropies
forwards or backwards in time. For the practical business
of performing CMB parameter estimation, it is natural of
course to suppress this freedom, since we are interested
in predicting the anisotropies today. The constraint to
“today” can be applied in at least two ways, which it
is important to distinguish. From the set of parameters
Pi we can calculate the proper-time age of the Universe,
t0. This quantity is only determined to an accuracy set
by the parameters Pi (e.g. using WMAP 3-year data,
Spergel et al. 2006 find that t0 = 13.73+0.13

−0.17 Gyr). How-
ever, the WMAP results constrain the redshift of last
scattering, zrec, (defined as the centre of the recombi-
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nation epoch) to much greater accuracy: zrec = 1088+1
−2

[4]. This very high accuracy is the result of our accu-
rate determination of the mean temperature of the CMB,
T = 2.725 ± 0.001 K [5, 6]. Thus, even though t0 is only
known to an accuracy comparable to the other parame-
ters Pi, implicit in analyses of the CMB is the very tight
constraint on a different temporal coordinate, zrec or T .

Essentially, the constraint on t0 arises from our deter-
mination of the expansion rate today, together with in-
formation on the content and geometry of the Universe,
which affect its expansion history. The constraint on T
is entirely independent of the content or geometry, hence
its superior accuracy. Popular CMB anisotropy numer-
ical packages, such as cmbfast or camb [32] automati-
cally impose the tight constraint arising from the mean
temperature. This constraint on T is equivalent, via the
Stefan-Boltzmann law, to a constraint on the energy den-
sity in CMB radiation, ργ . Therefore it is impossible,
without modifying the code, to generate spectra with
these packages that correspond to a given model evolved
into the past or future, since ργ necessarily evolves with
time. We can vary the proper age t0 of a model by
varying the expansion rate today, but this necessarily
changes the relative contributions of matter and radia-
tion in the past, which affects the physics at recombina-
tion and hence the shape of the CMB spectrum.

Fortunately the required code modifications are rela-
tively straightforward, and in addition it is possible to
describe the temporal evolution of the CMB anisotropies
analytically to very high precision. In this work we sys-
tematically describe this evolution both numerically and
analytically, within the context of the standard ΛCDM
(Λ Cold Dark Matter) model, in order to complete the
standard results on the parametric dependence of the
CMB. The verification of our numerical work with our
analytical results and conversely the characterization of
our analytical approximations with the full numerical cal-
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culations will be crucial in this novel study. We will
find that while the temporal behaviour of the CMB
power spectrum is determined mainly by a simple geo-
metrical scaling relationship, less trivial physics arises
when we consider the behaviour of correlations between
anisotropies at different times.

It can certainly be argued that the standard calcula-
tions of the CMB anisotropy spectrum implicity describe
its time dependence in that the spectrum must be evolved
from the time of recombination to the present. Neverthe-
less, there appear to have been very few explicit discus-
sions of the time dependence, with the exceptions being
primarily concerned with the distant future. Gott [7]
points out that at extremely late times the typical wave-
lengths of CMB radiation will exceed the Hubble radius,
and so the CMB radiation will be lost in a de Sitter back-
ground. Loeb [8] mentions that as the time of observation
increases, the radius of the last scattering sphere also in-
creases, and approaches a maximum in a ΛCDM model.
This leads to the potential for reducing the cosmic vari-
ance limitation on the determination of the anisotropy
spectrum. Krauss and Scherrer [9] point out that well
before this final stage, the CMB will redshift below the
plasma frequency of the interstellar medium and hence
be screened from view inside galaxies.

Importantly, when discussing the future evolution of
the Universe it must be remembered that even the qual-
itative details can depend very sensitively on the model
adopted. An example is the potential destruction of the
Universe in finite proper time in a “big rip” [10] when
the dark energy violates the weak energy condition, with
equation of state w < −1. In the present work, for
the sake of definiteness and simplicity, we conservatively
choose a model in which the dark energy is a pure cosmo-
logical constant. However, using the techniques we dis-
cuss it is straightforward to extend our results to other
specific dark energy models, a subject we will return to
in future work [11].

An interesting question that naturally arises in the
present context is: How long must we wait before we
could observe a change in the CMB? The formalism that
we develop here will be necessary to answer this question,
and we will address this explicit issue in future work [11].

We begin in Section II with a description of the time
dependence of the “bulk” properties of the CMB, namely
the mean temperature and the dipole. After a brief re-
view of the formalism used to describe the anisotropy
power spectrum, its evolution is described analytically in
Section III, including the effects of the integrated Sachs-
Wolfe effect, tensor modes, and reionization, and numer-
ical calculations are presented using our modified version
of the line-of-sight Boltzmann code camb. In Section IV
we introduce the difference map power spectrum and as-
sociated correlation function, and present analytical and
numerical calculations. Section V presents our conclu-
sions, and in the Appendix a description of an impor-
tant approximation method is presented. We set c = 1
throughout.

II. TIME EVOLUTION OF THE BULK CMB

The temperature fluctuations on the CMB sky can be
decomposed into a set of amplitudes of spherical harmon-
ics (see Section IIIA). The angular mean temperature
(or “monopole”) and dipole have a special status. The
mean temperature is just a measure of the local radia-
tion energy density, while the value of the dipole depends
on the observer’s reference frame at linear order (higher
multipoles are independent of frame at this order).

A. The mean temperature

As time passes, the change in the CMB that is simplest
to quantify is the cooling of its mean temperature T due
to the Universe’s expansion. The CMB radiation was
released from the matter at the time of last scattering,
when T ' 3000 K. It later reached a comfortable 300 K
at an age of about t ' 15 Myr, and is now only a frigid
few Kelvin. Indeed, the monotonicity of the function
T (t) means that T itself can be used as a good time
variable. Thus we can consider measurements of T as
direct readings of a sort of “cosmic clock”.

Today the CMB radiation is essentially free stream-
ing, i.e. non-interacting with the other components of
the Universe. Therefore the energy density in the CMB
evolves according to the energy conservation equation
ρ̇γ = −4Hργ , where H is the Hubble parameter and
the overdot represents the proper time derivative. Since
ργ ∝ T 4, we have Ṫ = −HT . Evaluating this expression
today, using T0 = 2.725 K and H0 = 73 km s−1 Mpc−1

(subscript 0 indicates values today), we find

Ṫ0 = −0.20 µK kyr−1. (1)

Thus in 5000 yr the mean temperature will drop by 1 µK.
The CMB radiation continues to redshift indefinitely

as the universe expands in the late Λ-dominated de Sit-
ter phase. However, this does not mean that as the CMB
becomes increasingly difficult to measure, clever experi-
mentalists need only to ever refine their instruments in
order to keep up. Instead, a fundamental limit exists
below which a CMB temperature cannot be sensibly de-
fined. An object in an otherwise empty de Sitter phase
will see a thermal field with temperature [12]

TdS =
H

2π
=

1

2π

√
Λ

3
. (2)

Therefore, after the CMB temperature redshifts to below
TdS, the CMB becomes lost in the thermal noise of the
de Sitter background, as pointed out in [7] (see also [13]).

To see explicitly the difficulty with measuring the CMB
at such extremely late times, consider the typical wave-
lengths of radiation in the CMB. A thermal spectrum at
temperature T consists of wavelengths λ on the char-
acteristic scale T−1 (the precise peak position of the
Planck spectrum depends on the measure used for the
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thermal distribution). Therefore when T = TdS we have
λ ' H−1, i.e. the typical CMB wavelengths become of
order the Hubble length. Alternatively, at late times in
the de Sitter phase the frequency of a mode of CMB ra-
diation of fixed comoving wavelength redshifts according
to

ω(t) = ω(t1)e
−HdS(t−t1), (3)

where

HdS ≡
√

ΩΛH0 (4)

is the asymptotic value of the Hubble parameter and t1 is
some late proper time. Therefore the accumulated phase
shift between time t1 and the infinite future is

∫ ∞

t1

ω(t)dt =
ω(t1)

HdS
. (5)

This expression tells us that when the frequency becomes
less than the Hubble parameter (i.e. the wavelength be-
comes larger than the Hubble length), a full temporal
oscillation cannot be observed, even if we observe into
the infinite future. In terms of conformal time, the oscil-
lation rate remains constant in the de Sitter phase, but
there is only a finite amount of conformal time available
in the future. Indeed, considering the quantum nature
of such a mode, this calculation provides insight into the
necessity of a residual de Sitter thermal spectrum at this
scale.

The energy density in the CMB at arbitrary scale fac-
tor a is given by

ργ =
3H2

0m
2
PΩγ

8π

(a0

a

)4

, (6)

where mP is the Planck mass and Ωγ = 5 × 10−5 is the
fraction of the total density in the CMB today. Using
this expression we can show that we must wait until
a/a0 ∼ 1030 before ργ = ρdS ≡ T 4

dS and the CMB be-
comes lost in the de Sitter background. This corresponds
to an age of t = 1 Tyr. If we ask instead at what scale
factor would the radiation density be equal to the Planck
density, ρP = m4

P, we find a/a0 ∼ 10−32. It might ap-
pear, therefore, that we exist at a special time, in that the
radiation density today is roughly 120 decades removed
from both the Planck era and the final era when T = TdS.
To understand the origin of this coincidence, note that by
virtue of the above expressions and the energy constraint
(or Friedmann) equation, the three densities ρP, ρΛ, and
ρdS are in the geometrical ratio m4

P : Λm2
P : Λ2, up to nu-

merical factors. Therefore, the apparent coincidence just
described is actually equivalent to the standard coinci-
dence problem, namely that ρΛ ' ρtot today, given that
ργ differs from ρtot today by “only” a few decades. Any
density that today even crudely approximates the dark
energy density will necessarily be separated by roughly
120 decades from both ρP and ρdS.

B. The dipole

The observed dipole anisotropy in the CMB can be
attributed to the Doppler effect arising from our peculiar
velocity, v, with respect to the frame in which the CMB
dipole vanishes. That peculiar velocity, and hence the
dipole, is expected to evolve with time. The magnitude
of the dipole can be specified by the maximum CMB
temperature shift over the sky, δTd, due to the velocity
v. This is given by the lowest order Doppler expression,

δTd

T
= v. (7)

(In terms of the spherical harmonic expansion to be in-
troduced in Eq. (16), we have δTd/T = a10, when the
polar axis is aligned with v.)

The current best estimate of the magnitude of the di-
pole comes from observations of the WMAP satellite—
indeed, the annual modulation by the Earth’s motion
around the Sun is actually used to calibrate satellite ex-
periments, so this aspect of the time-varying dipole is al-
ready well measured. The measured value of the dipole,
in Galactic polar coordinates, is (δTd, l, b) = (3.358 ±
0.0017 mK, 263.86 ± 0.04◦, 48.24 ± 0.10◦) [14]. Equiv-
alently, the Cartesian velocity vector is v0 ' (−26.3,
−244.6, 275.6) km s−1, where the first component is to-
wards the Galactic centre, and the third component is
normal to the Galactic plane. Therefore, in natural units
we have v0 = 1.2× 10−3, so the lowest order approxima-
tion, Eq. (7), is valid.

In order to determine the evolution of the dipole, we
must specify the worldline with respect to which the
CMB is measured. During matter or Λ domination, for
which pressure gradients vanish to very good approxima-
tion, we can take that worldline to be a geodesic. Then it
is straightforward to show that the peculiar velocity (and
hence the dipole) evolves, at lowest order in perturbation
theory, according to

v = v0
a0

a
, (8)

where a is the background scale factor. This expression
for the evolution of v describes a simple cosmological-
time-scale decay of the dipole anisotropy. However, the
expression was derived on the assumption that lowest
order perturbation theory was valid, which is certainly
not a good approximation on sufficiently small scales to-
day. To properly describe the evolution of the velocity v

we must take into account the presence of the nonlinear
structures we observe on small scales today.

This velocity vector can be considered as a sum of in-
dividual vectors contributing to the overall motion of the
Sun with respect to the CMB. In the local neighborhood,
the Sun moves with respect to the “local standard of
rest”, which in turn moves with respect to the Galactic
centre. However, the peculiar motions in the Solar neigh-
borhood are subdominant compared with the motion of
the Sun around the Milky Way [15], so for the purposes
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of the simple calculation which follows we ignore these
contributions. Also, we will consider here times scales
short enough that the motion of the Milky Way within
the Local Group, and the Local Group relative to Virgo,
the Great Attractor, and other distant cosmic structures
is approximately constant.

Just as today we can detect the modulation of the
Earth’s motion around the Sun, in the future, with in-
creasing satellite sensitivity, we may be able to observe
the Sun’s motion around the Galaxy. For the motion of
the Sun around the Milky Way, we assume that this is
simply a tangential speed of 220 km s−1 at a distance of
8.5 kpc. Using the current observed value of v to infer
the velocity of the Galactic centre with respect to the
CMB rest frame, the time dependent Sun-CMB velocity
vector is then

v(t) =

[
222 sin

(
2πt

T

)
− 26.3,

222 cos

(
2πt

T

)
− 466.6, 275.6

]
km s−1 , (9)

where the Galactic orbital period is T = 2.35 × 108 yr.
In order to ascertain when a change in the dipole is

detectable, one could compute a sky map of the dipole at
two times. If the temperature variance of the difference
map is greater than the experimental noise variance, then
a detection is probable. In this case, the variance of the
difference map, which we denote by CS, is CS = [(δvx)2+
(δvy)2 + (δvz)

2]/(4π), where δv is the difference of the
Sun-CMB dipole vector between the two observations.
Using Eq. 9, and converting to fractional temperature
variations, the signal variance of the changing dipole is
then

CS = 8.7 × 10−8

[
1 − cos

(
2πt

T

)]
. (10)

Later in this paper we compute signal variances involving
higher order CMB multipoles. These variances are of
course much smaller than that of the dipole. In a follow
up paper [11] we will discuss in detail the prospects for
detecting a change in the CMB with future experiments.

Finally, we note that in this simple calculation it is
assumed that we have an exterior frame of reference ex-
ternal to the Milky Way in order to construct our co-
ordinate system. This could be provided, for example,
by the International Celestial Reference Frame, based on
the positions of 212 extra-galactic sources [16].

III. THE ANISOTROPY POWER SPECTRUM

A. Review of the basic formalism

There is much more information encoded in the
anisotropies of the CMB than in the mean temperature,
since the anisotropies are determined by the details of the
matter and metric fluctuations near the last-scattering

surface (LSS) and all along our past light cone to to-
day. Therefore it is much less trivial to determine the
time evolution of the anisotropies than the mean tem-
perature (or dipole). However, in the approximation that
all of the CMB radiation was emitted from the LSS at
some instant tLS when electrons and photons decoupled,
and then propagated freely, the evolution of the primary
power spectrum of the CMB is determined by a simple
geometrical scaling relation which is closely related to the
main geometrical parameter degeneracy in CMB spectra.
In order to derive this relation, and to describe the be-
haviour of the correlation functions introduced in later
sections, it will be helpful to first summarize the stan-
dard description of CMB anisotropies in a form that will
be easy to generalize. This subsection may be skipped
by readers familiar with the material. For detailed treat-
ments of the generation of anisotropies see e.g. [17, 18].

At very early times, when each perturbation mode, la-
belled by comoving wavevector k, is outside of the Hub-
ble radius, the fluctuations can be described by a single
perturbation function, for the case of adiabatic pertur-
bations. It is very convenient to take this function to be
the curvature perturbation on comoving hypersurfaces,
R, since this quantity is conserved on large scales in this
case, and hence can be readily tied to the predictions of
a specific inflationary model. In the simplest models of
inflation, R is predicted to be a Gaussian random field to
very good approximation, fully described by the relation

〈R∗(k)R(k′)〉 = 2π2δ3(k − k
′)
PR(k)

k3
, (11)

with primordial power spectrum PR(k) and k ≡ |k|. For
a scale-invariant spectrum we have PR(k) = constant.

The fluctuations at last scattering can be described by
a set of matter and metric perturbations, φi(x, η), where
for future convenience we have used comoving coordinate
x and conformal time η. Since linear perturbation theory
is a very good approximation at the scales sampled by the
CMB, this set of perturbations is determined from the
primordial comoving curvature perturbation by transfer
functions Ai(k, η) via

φi(k, η) = Ai(k, η)R(k). (12)

In the approximation of abrupt recombination, so that
the LSS has zero thickness, followed by free streaming of
radiation, and ignoring the effect of gravitational lensing
by foreground structure, the observed primary tempera-
ture anisotropy δT (ê)/T in direction ê is determined by
the fluctuations at the corresponding point on the LSS,
i.e.

δT (ê, η)

T (η)
= F (φi(rLS, ê, ηLS)), (13)

for some linear function F . Here rLS = η − ηLS is the
comoving radial coordinate to the LSS from the point
of observation, taken to be the origin of spherical coor-
dinates. In the approximation that photons are tightly
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coupled to baryons before ηLS, the function F can be
written in terms of two perturbation functions as

F (φi(rLS, ê, ηLS)) = φ1(rLS, ê, ηLS)+
∂

∂rLS
φ2(rLS, ê, ηLS).

(14)
Eqs. (13) and (14) describe the generation of CMB
anisotropies through the Sachs-Wolfe effect [19], with the
first term on the right-hand side of (14) the so-called
“monopole” contribution, and the second term the “di-
pole” or “Doppler” contribution.

The preceeding equations have the very simple inter-
pretation that when we measure the CMB anisotropies at
some time η we are “seeing” the primordial fluctuations
R on the comoving spherical shell r = rLS = η − ηLS, as
processed by the linear transfer functions A1 and A2 to
the time ηLS. If we observe at a later time η′, we see the
fluctuations on a larger shell of radius r = r′LS ≡ η′−ηLS,
as illustrated in Fig. 1. The fluctuations at the LSS con-
tain structure at various scales, encoded in the trans-
fer functions, due to acoustic oscillations within the pre-
recombination plasma. Assuming the statistical homo-
geneity of space, that structure will occur at the same
physical scales on the shells r = rLS and r = r′LS. There-
fore we expect that structure visible at time η on angular
scale θ will also be visible at η′, but at the smaller angular
scale

θ′ = θ
rLS

r′LS

, (15)

at least for small scale structure, θ � 1. To make this
rigorous, and to derive in addition the scaling law for the
amplitude of angular structure, we need to next introduce
a spherical expansion of the CMB anisotropy.

We expand as usual the temperature fluctuation ob-
served in some direction ê in terms of spherical harmonics
Y`m as

δT (ê, η)

T (η)
=
∑

`m

a`m(η)Y`m(ê). (16)

The expansion coefficients a`m determine all the details
of the particular sky map of the CMB observed at time
η. However, the statistical properties of the a`ms are
determined through Eqs. (12) to (14) by the statistics of
R encoded in Eq. (11). To make this explicit, we need the
spherical expansion of the perturbations φi(rLS, ê, ηLS),
namely

φi(rLS, ê) =

√
2

π

∫
kdk

∑

`m

φi`m(k)j`(krLS)Y`m(ê).

(17)
Here i = 1 or 2, j` is the spherical Bessel function of the
first kind, and we have dropped the understood argument
ηLS. Next the identity

f`m(k) = ki`
∫
dΩkf(k)Y`m(k̂) (18)

rLS

k

r
′

LS

θ
′

θ

FIG. 1: Our spheres of last scattering at time η (inner) and
η′ (outer). The group of vertical lines indicates the crests of
a mode k, and hot spots will be observed at the intersections
of those crests with the spheres. One wavelength of the mode
will span angle θ at η but a smaller angle θ′ at η′.

(see, e.g., Ref. [20]) combined with Eq. (12) allows us to
write

φi`m(k) = Ai(k)R`m(k). (19)

Now, combining Eqs. (14), (17), and (19), we have

F (rLS, ê) =

√
2

π

∫
kdk

∑

`m

R`m(k)T (k, `, rLS)Y`m(ê),

(20)
where

T (k, `, rLS) ≡ A1(k)j`(krLS) +A2(k)j
′
`(krLS) (21)

and the prime denotes differentiation with resepect to
rLS. Finally, equating coefficients between Eq. (20) [with
Eq. (13)] and Eq. (16), we obtain

a`m(η) =

√
2

π

∫
kdkR`m(k)T (k, `, rLS), (22)

where we have restored the argument η = rLS + ηLS.
This expression gives the CMB anisotropy in terms of
the primordial perturbations R and a new linear transfer
function T (k, `, rLS).

In order to determine the statistical properties of the
a`ms, we need the expression

〈R`m(k)R∗
`′m′(k′)〉 = 2π2δ(k − k′)

PR(k)

k3
δ``′δmm′ , (23)
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which can be derived from Eq. (11). Using this expression
and Eq. (22) we find

〈a`m(η)a∗`′m′(η)〉 = C`(η)δ``′δmm′ , (24)

where

C`(η) ≡ 4π

∫
dk

k
PR(k)T 2(k, `, rLS). (25)

That is, each coefficient a`m has variance C`(η) (which
is called the anisotropy power spectrum) and coefficients
for different spherical modes are uncorrelated.

Note that Eq. (22), and hence Eqs. (24) and (25), hold
even when we relax the tight coupling and free streaming
approximations, with some transfer function T (k, `, rLS).
However, in the general case the transfer function must
be calculated numerically.

B. Analytical time evolution for primary

anisotropies

The formalism developed in the preceeding subsection
can now be applied to describe the time evolution of the
primary CMB anisotropy spectrum, under the abrupt re-
combination and free streaming approximations. To de-
termine the time evolution of C`(η), Eq. (25) tells us that
we only need to consider the behaviour of T 2(k, `, rLS) as
rLS increases (note that we will often adopt the coordi-
nate rLS as an effective time coordinate). To do this,
Eq. (21) tells us that we only require the behaviour of
the products j2` (krLS), j′2` (krLS), and j`(krLS)j′`(krLS) as
functions of rLS. This can be done in the limit `� 1 us-
ing asymptotic forms for the Bessel functions. For large
` we can write [see Ref. [21], Eq. (9.3.3)]

j`(x) = (x4 − x2`2)−1/4[cos(θ) + O(1/`)], for x > `,
(26)

where θ = θ(x) is a phase. For x < `, j`(x) decays
rapidly. This allows us to write a scaling relation for the
envelope of the Bessel oscillations, namely

j`(x) ∼ αjα`(αx), (27)

for positive α such that α`� 1 also applies. This expres-
sion will allow us to obtain the time dependence of the
“monopole” contribution to T 2(k, `, rLS), which is pro-
portional to j2` (krLS). We can write the “dipole” part
j′2` (krLS) in terms of spherical Bessel functions using re-
currence relations and again apply Eq. (27) to obtain
the time dependence. The cross term proportional to
j`(krLS)j′`(krLS) can be shown to be negligible, i.e. the
monopole and dipole contributions add incoherently. Ap-
plying Eq. (27), then, we find that for large `,

T 2(k, `′, r′LS) ' r2LS

r′2LS

T 2(k, `, rLS), (28)

where we have defined

`′ = `
r′LS

rLS
. (29)

Applying Eq. (25) we finally obtain the scaling relation
for the power spectrum,

`′2C`′(η
′) ' `2C`(η). (30)

Importantly, Eq. (30) holds independently of the form
of the functions Ai(k) and PR(k), so the result applies
to the acoustic peak structure as well as to non-scale-
invariant primordial spectra.

This result confirms our previous prediction, Eq. (15),
for the dependence of angular scales on observation time.
But the dependence of the amplitude of the spectrum en-
coded in Eq. (30) is also not surprizing, since the quantity
`(`+1)C` is independent of ` in the Sachs-Wolfe plateau
for a scale invariant spectrum, as is well known. But the
height of that plateau, calculated using A1 = const and
A2 = 0 above, is independent of the observation time.
(Indeed that height is, up to numerical factors, simply
PR. Recall that C` is determined by the ratio δT/T .
The absolute anisotropies δT exhibit the same expan-
sion redshift as does the mean temperature T .) Hence as
η increases, the quantity `2C`(η) must remain constant
(up to corrections of order 1/`), which is precisely what
Eq. (30) says. Of course, the result (30) is valid for the
entire acoustic peak structure, not just the Sachs-Wolfe
plateau.

The result (30) is derived in the Appendix much more
directly, without resorting to properties of Bessel func-
tions, using the flat sky approximation. In that approach
we consider anisotropies in a patch of sky small enough
that it can be approximated as flat, and errors are again
of order 1/`.

In addition to the main temperature anisotropies we
have been considering here, there are also polarization
spectra present in the CMB radiation. The polarization
is sourced primarily near last scattering, so its spectra
will also scale according to Eq. (30). A small part of
the largest-scale polarization is sourced near reionization,
so we expect that that contribution will scale with the
comoving radius to the reionization redshift, rather than
to the last scattering surface.

Having found the scaling relation (30), we can next
derive some simple consequences from it. First, we can
write the total power in the anisotropy spectrum as

∑

`m

C`(η) =
∑

`

(2`+ 1)C`(η) ' 2

∫
`C`(η)d` (31)

in the large ` approximation. Then, using Eq. (30), we
have

∑

`

(2`+ 1)C`(η) '
∑

`

(2`+ 1)C`(η
′), (32)

where the approximation comes from ignoring terms of
order 1/`. That is, the total power is constant in time, for
the free streaming of primary anisotropies. This result is
equivalent to the “conservation condition” stated in [22].
Implicit in this result is the assumption of statistical ho-
mogeneity, so that no new anomalous power will be re-
vealed at the largest scales as rLS increases. As we will see
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in Section III C below, secondary anisotropies, in particu-
lar those generated through the “integrated Sachs-Wolfe
effect”, are expected to grow dramatically at late times
and hence the total power will not in fact be conserved.

Another consequence of Eq. (30) follows from the na-
ture of the asymptotic future in our ΛCDM model. Ob-
servers in a universe with positive Λ have a future event
horizon, i.e. the conformal time converges to a finite con-
stant ηf as proper time t → ∞. Therefore the angular
scaling relation (29) tells us that as proper time (or scale
factor) approaches infinity, the ` value for any particular
feature in the C` spectrum, such as a peak position, will
approach a finite maximum, i.e. features will approach
a non-zero minimum angular size. (Geometrically, the
LSS sphere approaches a maximum comoving radius, so
features on it must approach a minimum size.) For our
fiducial model we chose ΩΛ = 0.77, and so Eq. (29) gives
for the limiting scaling relation

`f = `0

∫∞

aLS
(ȧa)−1da

∫ a0

aLS
(ȧa)−1da

= 1.31`0. (33)

For example, the first acoustic peak, which we observe
to be at the position `0 = 221 today, will asymptote to
`f = 290 in the late de Sitter phase. This asymptotic be-
haviour is in marked contrast to that of a purely matter-
dominated Einstein-de Sitter model. In the vanishing Λ
case, the numerator in Eq. (33) diverges (no event hori-
zon exists) and the structure in the C` spectrum shifts
to ever smaller scales.

The geometrical scaling relation (30) is very closely
related to the well-known geometrical parameter degen-
eracy in the CMB anisotropy spectrum between spatial
curvature and Λ [23, 24, 25]: If two cosmological models
share the same primordial power spectrum PR(k), the
same physical baryon and CDM densities today, ρb and
ρc, and finally the same angular diameter distance dA

to the LSS, then they will exhibit essentially identical
primary C` spectra. The degeneracy can only be broken
by secondary sources of anisotropy, such as the integrated
Sachs-Wolfe effect, or by other cosmological observations.

To understand the origin of this degeneracy and its re-
lation to the preceeding discussion, recall that the energy
density in the CMB today, ργ , is fixed to very high ac-
curacy by the measurement of the mean temperature, as
we mentioned in the Introduction. Therefore if we con-
sider models with identical values of the densities ρb and
ρc today, then the densities of baryons, CDM, and pho-
tons at last scattering are the same for all such models,
since the densities scale in a well-defined manner (for ex-
ample, ργ/ρc ∝ a0/a). Therefore, given the same initial
conditions in the form of PR(k), models that have com-
mon values of ρb and ρc today will have identical local
physics at least to the time of recombination, when any
spatial curvature or Λ will have negligible effect. Thus
these models will produce identical primary anisotropies.

If the models have different values of ΩK (spatial cur-
vature) and Λ then the dynamics, including the propaga-
tion of CMB anisotropies, will differ significantly at late

times as those components come to dominate. However,
if the models share the same angular diameter distance,
then their C` spectra, which should be calculated using
Eq. (25) with rLS replaced by dA (at least for small scales
where the effects of spatial curvature on the primordial
spectra can be ignored), will be identical. Geometrically,
models with identical PR(k), ρb, and ρc share the same
local physics to recombination, and hence the same phys-
ical scales for acoustic wave structures (in particular the
same sound horizon). For models which additionally have
identical dA, observers see the anisotropies generated on
a spherical shell at the time of last scattering of identi-
cal physical surface area (given by 4πd2

A). Hence those
physical acoustic scales are mapped to identical angu-
lar scales in the sky for the different models. In short,
the observed primary anisotropies in models with identi-
cal PR(k), ρb, ρc, and dA are produced under the same
local physical conditions on a sphere of identical phys-
ical size, and hence appear identical. The scaling rela-
tion (30) describes how the observed anisotropies change
if we hold the local physics at recombination (together
with Λ and ΩK) constant, but allow the time of observa-
tion to vary, which amounts to simply varying the size of
the sphere at last scattering that generates the observed
anisotropies. The parameter degeneracy states that the
same anisotropy spectrum can be produced even if Λ and
ΩK vary, as long as the size of the last scattering sphere
is held constant.

To close this discussion of the primary anisotropies,
we introduce the power spectrum difference δC`(η) ≡
C`(η

′) − C`(η) between the spectra observed at two dif-
ferent times. This is a measurable quantity which we
might consider a candidate for detecting the evolution of
the CMB. Given some spectrum C`(η) at a single time η
we can readily calculate the difference δC`(η) using the
scaling relation (30). For small δη ≡ η′ − η, we have

δC`(η) '
∂

∂η
C`(η)δη, (34)

so that the change in the CMB power spectrum at fixed `
is proportional to δη. As we will see in the next Section,
this behaviour differs from that of the power spectrum of
the difference a`m(η′) − a`m(η). Using Eq. (30) for the
time dependence, we can write

δC`(η) = − δη

ηLS

[
`
∂C`(η)

∂`
+ 2C`(η)

]
, (35)

at first order in δη/ηLS. Note that δC` can have either
sign, and will equal zero whenever ∂(`2C`)/∂` = 0, as for
example on a scale-invariant Sachs-Wolfe plateau or at
an acoustic peak.

Recall that the quantity C`(η) describes the relative
anisotropies δT/T , and hence is insensitive to the bulk
expansion redshift. If we wish to consider instead the
evolution of the absolute temperature anisotropies δT ,
the relevant quantity to calculate is

δ[T 2C`(η)] = T 2

[
−2

δη

(aH)−1
C`(η) + δC`(η)

]
(36)
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at lowest order in δη/(aH)−1, where we have used the

relation Ṫ = −HT . Since in standard ΛCDM models
ηLS is a few times the comoving Hubble radius (aH)−1,
the first term on the left-hand side of Eq. (36) is of the
same order as the second term. That is, the expansion
cooling effect is on the same order as the geometrical
scaling effect, and so it will be important to distinguish
the two effects.

C. Integrated Sachs-Wolfe effect

The simple scaling relation derived in the previous sub-
section determines the time evolution of the power spec-
trum of anisotropies produced near the LSS. However,
in the standard ΛCDM model, significant anisotropies
are also produced at late times as a result of the chang-
ing equation of state as the Universe becomes cosmolog-
ical constant dominated. This process is known as the
(late) integrated Sachs-Wolfe (ISW) effect [26]. Since
these anisotropies are produced relatively locally, their
time dependence must be explicitly calculated. Note
that anisotropies are also generated by the early ISW ef-
fect, during the time that radiation still significantly con-
tributes to the dynamics. However, those anisotropies are
produced relatively close to the LSS, adding coherently
to the primary Sachs-Wolfe contribution, and hence scale
as do the primary anisotropies, according to Eq. (30).

The contribution of the late ISW effect can be de-
scribed by adding to the transfer function, Eq. (21), a
term TISW(k, `, η) which is an integral over the line of
sight to the LSS. For the case of interest, for which the
anisotropic stress is negligible, we have [18]

TISW(k, `, η) = 2A3(k)

∫ η

ηLS

dη′g′(η′)j`[k(η − η′)]. (37)

Here g′(η) ≡ dg/dη, with g(η) being the growth func-
tion which describes the temporal evolution of the zero-
shear or longitudinal gauge curvature perturbation, ψ
(also called the “Newtonian potential”), via

ψ(k, η) ≡ g(η)A3(k)R(k). (38)

The function A3(k) is defined such that g(η) → 1 at early
times in matter domination. Then, a gauge transforma-
tion between the comoving, R, and zero-shear, ψ, curva-
ture perturbations during the matter dominated period
gives A3(k) = −3/5.

To evaluate the ISW contribution, we need to first de-
termine the evolution of the curvature perturbation ψ.
To do this, we only need to solve the space-space, or dy-
namical, linearized Einstein equation. For the case where
pressure and anisotropic stress perturbations can be ig-
nored, which holds in a universe containing only dust and
Λ, this equation becomes

ψ̈ + 4Hψ̇ + (3H2 + 2Ḣ)ψ = 0 (39)

(see, e.g., Ref. [27]). There are no spatial gradients in
this equation, which confirms that the growth function is
independent of k. It is straightforward to verify that the
growing mode solution to this equation is

ψ(η) ∝ H

a

∫ η

dη′
a2Ḣ

H2
. (40)

Next, using the relation a3Ḣ = const, which holds ex-
actly for a universe consisting of dust and cosmolog-
ical constant, employing Eq. (38), and matching the
growing mode solution to the initial condition ψ0(k) =
−(3/5)R(k), we obtain

g(η) =
5

2

Ω0H

a

∫ η dη′

aH2
, (41)

where Ω0 is the density in matter today relative to the
critical density, and the scale factor is normalized to unity
today.

Now that the evolution of the growth function has been
determined, we can evaluate the ISW contribution to the
power spectrum. It can be shown that the cross term
between the Sachs-Wolfe and (late) ISW terms is negli-
gible, so the two add incoherently in C`. For the ISW
part we have

CISW
` (η) = 4π

∫
dk

k
PR(k)T 2

ISW(k, `, η) (42)

=
72

25

π2PR

`3

∫ η

0

dη′g′2(η′)(η − η′). (43)

To obtain this result we have assumed a scale invariant
primordial spectrum, PR(k) = PR, and we have used the
relation [28]

∫ ∞

0

dk

k
j`[k(η− η′)]j`[k(η− η′′)] '

π

2`3
(η− η′)δ(η′− η′′),

(44)
which holds for large `. Unfortunately it is at small `
that the ISW effect is greatest, so this approximation,
which appears to be the best we can do analytically, is
not terribly accurate at very late times when the ISW
contribution becomes very large, as we shall see. Nev-
ertheless, Eq. (43) will give a reasonable estimate of the
ISW contribution to a change δC` over short time inter-
vals.

Given a primordial amplitude, PR, and a matter den-
sity parameter today, Ω0, Eqs. (41) and (43) allow us to
calculate the ISW contribution to the power spectrum
at any time. In addition, taking the time derivative of
Eq. (43), we find for the rate of change of the ISW con-
tribution

∂

∂η
CISW

` (η) =
72

25

π2PR

`3

∫ η

0

dη′g′2(η′). (45)

Therefore, combining this expression with Eq. (35) for
the change in the primary Sachs-Wolfe power spectrum
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over short time intervals δη, we find for the total contri-
bution

δC`(η) = − δη

ηLS

[
`
∂C`(η)

∂`
+ 2C`(η)

− 72

25

π2PR

`3
ηLS

∫ η

0

dη′g′2(η′)

]
. (46)

D. Gravitational waves

Inflationary models generically predict a spectrum of
primordial gravitational waves, although the relative
contribution of these tensor modes to the total CMB
anisotropy ranges from substantial to very small, depend-
ing on the model. The anisotropies arise through the
tensor analogue of the scalar ISW line of sight integral,
Eq. (37). In place of the time derivative of the scalar cur-
vature perturbation ψ, the tensor contribution involves
the rate of change of the transverse and traceless part
of the spatial metric perturbation, hij . The evolution
of this part of the metric perturbation is given by the
dynamical Einstein equation, which becomes (see, e.g.,
[27])

h′′ij + 2aHh′ij −∇2hij = 0 (47)

in the absence of tensor anisotropic stress, which is a valid
approximation in the matter- or Λ-dominated regimes.

The dynamics of hij as dictated by this equation de-
pends on the mode wavelength relative to the Hub-
ble scale. For k/(aH) � 1, the tensor mode is over-
damped, and the (growing) mode decays very slowly. For
k/(aH) � 1, the mode undergoes underdamped oscilla-
tions, decaying like hij ∝ eikη/a in the adiabatic regime.
Therefore, for a particular tensor mode k, the rate of
change h′ij is peaked near the time that the mode crosses
the Hubble radius, k/(aH) ∼ 1, and is small at early
and late times. This means that the contributions to the
CMB anisotropies from a particular scale arise primarily
when that scale enters the Hubble radius. In particular,
scales that enter significantly before last scattering will
have decayed before they could source the CMB. This
imposes a small scale cut-off on the tensor anisotropy
spectrum, with negligible power for

`� `c ≡ rLSȧLS, (48)

where 1/ȧLS is the comoving Hubble radius at last scat-
tering. Since ȧLS is fixed for a particular model, the `
cut-off scales with time of observation according to

`c(η
′) = `c(η)

r′LS

rLS
, (49)

which is the same scaling as for primary features in the
scalar CMB spectrum, Eq. (29).

For ` � `c, detailed calculations for a matter domi-
nated universe [29] show that the tensor anisotropy spec-
trum is nearly flat, mimicing the Sachs-Wolfe plateau.

In this case the tensor spectrum does not evolve apart
from the scaling of the cut-off, Eq. (49). However, as de-
scribed above, the largest angular scales will be sourced
at the latest times, and so for a universe with cosmolog-
ical constant this will lead to some dependence on ob-
servation time for those scales as the equation of state
changes at late times. For example, for time of observa-
tion η the tensor quadrupole is sourced near very roughly
the conformal time η/2 [29]. In the matter-dominated
era, the comoving Hubble radius 1/(aH) = 1/ȧ increases
with time, but as the Universe enters the Λ-dominated
era, 1/(aH) starts to decrease (indeed this defines accel-
eration). Therefore, the largest scale modes that con-
tribute to the tensor anisotropies will enter the Hubble
radius somewhat later in the presence of a cosmologi-
cal constant than without (sufficiently large-scale modes
will never enter the Hubble radius). The modes which
enter near time ηf/2, where ηf is the asymptotic final
conformal time, will have a significantly delayed entry
time, and therefore we expect the very largest scale ten-
sor anisotropies to be somewhat reduced at the latest
times.

E. Optical depth

One final line of sight effect on the CMB anisotropies
that we will consider is the time dependent optical depth
due to Thomson scattering. Looking back, it is the rapid
increase in scattering near the time of recombination that
makes it possible to speak of a “surface of last scatter-
ing”, where the primary anisotropies are emitted. At
later times, reionization results in a time dependent at-
tenuation of the amplitude of the power spectrum, which
it will be important to quantify. In addition, the increase
in optical depth for observers at later times will result in a
shift in the time of last scattering as defined for those ob-
servers, which we should estimate as a consistency check
on our previous calculations.

The first of these effects occurs at the epoch of reioniza-
tion (aR = 0.083 in our fiducial model, with the scale fac-
tor normalized to unity today). Here, we see a decrease
in the amplitude of intermediate to small scale (` >∼ 30)
anisotropies as photons are rescattered. On these scales,
C`(η) is reduced by a factor e2τR , where τR is the opti-
cal depth to reionization. To compute the suppression in
C`(η), recall the definition of the optical depth τ(a, aobs)
between scale factors a and aobs, given by

τ(a, aobs) = σT

∫ aobs

a

dt

da′
ne(a

′) da′ , (50)

where σT is the Thomson scattering cross-section and
ne(a) the electron number density. Assuming reioniza-
tion is sharp and the energy density of radiation is sub-
dominant, the optical depth to reionization, τR(aobs) ≡
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τ(aR, aobs) is given by (see, e.g., [30])

τR(aobs) = 0.046(1 − Yp)
Ωb

Ωm

(√
Ωmh2a−3

R + ΩΛh2

−
√

Ωmh2a−3
obs + ΩΛh2

)
, (51)

with τR(aobs) = 0 for aobs ≤ aR. In this expression Yp is
the primordial helium fraction (assumed to be 0.24).

Eq. (51) gives τR(1) = 0.088, so reionization reduces
C`(η) by a factor of approximately 0.84 by today [of
course we must evaluate the spectrum at different times
at the ` values related by the scaling relation Eq. (29)].
Much of the suppression of C`(η) occurs before the
present time. Since the time the scale factor was half its
present value, for example, the optical depth to reion-
ization has only increased by 0.003. As aobs → ∞,
Eq. (51) says that the optical depth will only increase
by δτ∞ ≡ τR(∞)− τR(1) = 5.7×10−4, so that C`(η) will
only be reduced by 0.1% relative to the value today. The
Universe is essentially transparent on cosmological scales
today.

The second effect we wish to quantify is the shift in
the time of last scattering ηLS at late times. We can de-
fine the time of last scattering to be the time from which
the integrated optical depth to the time of observation
ηobs reaches unity, so that τ(aLS, aobs) ≡ 1 if aLS is the
scale factor corresponding to ηLS. Then ηLS will clearly
depend on ηobs, with later observation times leading to
later times of last scattering (see Fig. 2). We ignored
any such effect in describing the time dependence of the
power spectrum in Section III B: we assumed that ηLS

was independent of observation time, with the comov-
ing position of the LSS, rLS, simply equal to the interval
ηobs − ηLS. Therefore it will be important to check that
the increase in the time of last scattering δηLS, as we
consider observations into the future, is negligible with
respect to the relevant length scales in the accoustic os-
cillations at last scattering.

Using the analytic form of the free electron fraction
near recombination given in [31], the optical depth to
scale factor a near recombination (ignoring the reioniza-
tion contribution) is given by

τLS(a) = 0.366(1 − Yp)
[
(1000a)−14.25

−(1000aobs)
−14.25

]
. (52)

The total optical depth to recombination also includes
the contribution from reionization, but Eq. (52) is suf-
ficient to calculate the change in redshift of last scat-
tering δaLS that corresponds to the increase in optical
depth δτ∞ as aobs → ∞ calculated above. The condi-
tion δτLS = δτ∞ gives δaLS = 4 × 10−8. This implies
that δηLS/ηLS = 8 × 10−7, so that the relative change in
ηLS is far smaller than the relative size of the smallest
accoustic features, which are at the 1/`max ∼ 10−3 level.
Therefore, our assumption that last scattering occurs at
the same ηLS regardless of observational time is entirely

δηLS

ηf

η0

FIG. 2: Conformal spacetime diagram illustrating the past
light cones (dashed lines) for an observer today and in the
distant future at ηf . Each cone reaches back to the LSS de-
fined by unity optical depth. Because of the extra optical
depth between η0 and ηf , the time of last scattering for the
observer at ηf is an interval δηLS later than for the observer
today.

justified for the current and future evolution of the CMB.
Of course for extremely early observation times, such that
the conformal time to last scattering is of order the thick-
ness of the LSS, this approximation will not be valid.

F. Time evolution from CAMB

In order to confirm and extend the analytic results of
previous subsections we have modified the camb soft-
ware to compute the CMB power spectrum at differ-
ent observational times. To do this, we simply modify
all routines such that we can evaluate the transfer func-
tions T (k, `, rLS) at different rLS, using the set of best-
fitting cosmological parameters as measured today. The
changes required to camb are straightforward—for the
most part all that is required is changing the tau0 vari-
able to trick the code into using a different observational
time. The parameters we use are those of a standard
six parameter ΛCDM model, given by Ωch

2 = 0.104,
Ωbh

2 = 0.0223, h = 0.734, nS = 0.951, AS = 2.02×10−9,
and zR = 11.1, where PR(k) = AS(k/k0)

nS−1 with pivot
scale k0 = 0.05Mpc−1, and zR is the redshift of reion-
ization. Where necessary, we set nS = 1 to simplify
comparison with analytic results. We do not expect sig-
nificant differences in our results if these parameters are
varied somewhat. Since the parameters are relative to
the present day value, the spectrum measured by an ob-
server with z > zR, for example, will not be affected by
the epoch of reionization and a future observer will see a
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universe completely dominated by dark energy.
In Fig. 3 we plot the power spectrum `(`+1)C`(η)/(2π)

calculated from our modified version of camb, parame-
terizing the time dependence in terms of the observa-
tional scale factor aobs, where aobs = 1 corresponds to
today. It is clear that the angular scale of features re-
sulting from projection of inhomogeneities near the LSS
can be understood from the scaling relation (30). For
example, in Fig. 3 we show the predicted scaling of the
first acoustic peak position (located at ` = 221 at the
present time) and find extremely good agreement with
the predicted value. The existence of a future event hori-
zon means that during Λ domination drLS/daobs tends to
zero and so the acoustic peak positions become “frozen
in”. With our parameters we see that the first acoustic
peak becomes frozen in at the value `f ' 290 as we pre-
dicted in Eq. (33).

FIG. 3: CMB power spectrum `(`+1)C`/(2π) as a function of
multipole ` and scale factor of observation aobs, as calculated
from our modified version of camb for our fiducial ΛCDM
model. We also plot the analytic scaling of the first acoustic
peak (thick dashed line) predicted by Eq. (30).

Recall that the scaling relation Eq. (30) predicts not
only how the angular sizes of features in the spectrum
scale with time, but also that the magnitude of the power,
`(` + 1)C`(η), remains constant into the future at, e.g.,
any acoustic peak. For late times, aobs

>∼ 0.3, Fig. 3 in-
deed confirms this prediction. Our fiducial model under-
went reionization at aR = 0.083, and we predicted in Sec-
tion III E that as a result the power spectrum should be
attenuated by approximately 16% on all but the largest
scales. Again, this is visible in Fig. 3. Recall that we
predicted a negligible 0.1% reduction in C`(η) between
today and the distant future.

Also visible in Fig. 3 is a substantial increase in power
at the largest scales at late times due to the increas-
ing ISW effect in our ΛCDM model, which we discussed
in Section III C. Indeed, for aobs

>∼ 5.0 the quadrupole
power actually exceeds the power at the first acoustic

peak. The ISW contribution converges as the observation
scale factor aobs approaches infinity, since in the integral
in Eq. (43), we have g′(η) → 0 and η → ηf as aobs → ∞,
where ηf is finite. The asymptotic form of the power
spectrum at late times is plotted in Fig. 4, together with
the current spectrum. The dramatic increase in the ISW
contribution as well as the shift in peak positions pre-
dicted in Eq. (33) are clearly visible.
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FIG. 4: Anisotropy power spectra for scalars (top pair of
curves) and for tensors (bottom pair, arbitrary scale), calcu-
lated using our modified version of camb for today (dashed
curves) and for the asymptotic future (solid).

Fig. 4 also presents the gravitational wave contribu-
tion to the anisotropy spectra today and in the asymp-
totic future. In Section IIID we described the expected
behaviour of tensor modes in the future, which entailed
the same geometrical scaling of the small-scale cut-off in
the spectrum, as well as a decrease in power at the very
largest scales. Both of these features are visible in Fig. 4.

As a check on our custom modifications to camb, we
plot in Fig. 5 the power spectrum from camb for aobs =
2.0, as well as the corresponding spectrum calculated
from a power spectrum generated for today, aobs = 1,
and transformed to aobs = 2.0 using the scaling relation
Eq. (30). Additionally, the spectrum calculated from the
scaling relation included the increased ISW component
calculated from the analytical approximation Eq. (43).
To facilitate the use of this analytical expression, the
spectral index was set to nS = 1 for these calculations.
Since the curves coincide at all but the largest scales, it
is clear that the scaling relation has accurately captured
the evolution of C`(η). However, the ISW contribution is
substantially overestimated, indicating the limitations of
the approximation Eq. (44) involved in deriving Eq. (43).

To make further contact with the analytic results in
previous subsections, in Fig. 6 we plot the difference
δC` ≡ C`(a

′
obs) − C`(aobs) calculated using our modified

version of camb between the power spectrum today, at
aobs = 1, and at a future time, when a′obs = 1+δa, for the
cases δa = 10−4, 0.001, and 0.01. These curves exhibit
very accurately the scaling with δa predicted in Eq. (34),
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FIG. 5: Anisotropy power spectrum for aobs = 2.0 calculated
with our modified version of camb (solid line) and using the
scaling relation Eq. (30) and analytical ISW approximation
Eq. (43) (dashed). We set nS = 1 for these calculations.

when we recall that δa = H0δη for small δη. Slight depar-
tures from this simple scaling are evident at the largest
scales, where the spectra are nearly flat and hence their
precise shape sensitively influences the location of zeros
in δC`. In Fig. 6 we also plot the analytical result cal-
culated from the power spectrum today using Eq. (46).
Again we find excellent agreement with camb at all but
the largest scales. We also find reasonable agreement at
low `, indicating that our ISW approximation is quite
good for small time increments from today.
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FIG. 6: Absolute value of the difference in the CMB power
spectrum `(` + 1)|δC`|/(2π) between aobs = 1 and a′

obs =
1 + δa. The solid curves were calculted from our modified
version of camb, and from top to bottom denote δa = 0.01,
0.001, and 10−4. The dashed curve was calculated using the
analytical expression Eq. (46) for δa = 10−4. We used nS = 1
for these calculations.

IV. THE DIFFERENCE MAP POWER

SPECTRUM

A. Analytical time evolution

In the previous section we found a very simple scal-
ing relation to describe the time dependence of the CMB
power spectrum, which, together with the ISW effect,
thoroughly describes the evolution of the spectrum. How-
ever, if we are interested in the best way to observe
a change in the CMB we might expect that observing
changes in the actual sky map, or the a`ms, should be far
more promising than looking for changes in the heavily
compressed C` power spectrum. Intuitively, as the shell
r = rLS on the LSS grows in size, we expect the finest
structures to change first, then the larger ones. As we
shall see, the difference between two sky maps measured
at different times does indeed encode much more infor-
mation than the C` spectra, namely the correlations be-
tween the two maps, although perhaps counterintuitively
the magnitude of a change C` will dominate over the dif-
ference map power spectrum for small time intervals.

1. Definitions

Consider two measurements of the a`ms at times η and
η′ and define the difference map by

δa`m ≡ a`m(η′) − a`m(η). (53)

Using Eq. (22), we can readily calculate the statistical
properties of the difference map. We find

〈δa`mδa
∗
`′m′〉 = Dηη′

` δ``′δmm′ , (54)

where we define the power spectrum of the difference

map, Dηη′

` , by

Dηη′

` ≡ C`(η) + C`(η
′) − 2Cηη′

` , (55)

and

Cηη′

` ≡ 4π

∫
dk

k
PR(k)T (k, `, rLS)T (k, `, r′LS). (56)

Note that the quantity 〈δa`mδa
∗
`′m′〉 is diagonal in ` and

m, and that Cηη
` = C`(η).

The quantity Cηη′

` is a correlation function that relates
the anisotropies at time η with those at time η′, through

Re 〈a`m(η)a∗`′m′(η′)〉 = Cηη′

` δ``′δmm′ . (57)

Since the variances C`(η) and C`(η
′) will in general differ,

the quantity Cηη′

` is not the best measure of correlations,

and the spectrum Dηη′

` measures not only the loss of cor-
relations but also the change in variance C`(η). Therefore
we may consider instead the modified difference map

δa`m ≡
√
C`(η)

C`(η′)
a`m(η′) − a`m(η), (58)
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which normalizes the modes at η′ to have the same vari-
ance as those at η. Then we find

〈δa`mδa
∗
`′m′〉 = 2C`(η)

(
1 − C̄ηη′

`

)
δ``′δmm′ , (59)

where we have defined the normalized correlation func-
tion by

C̄ηη′

` ≡ Cηη′

`√
C`(η)C`(η′)

. (60)

This normalized function is useful in that we have C̄ηη′

` =
1, 0, and −1 for perfect correlations, no correlations,
and perfect anticorrelations, respectively. Similarly, the

quantity 1− C̄ηη′

` measures the loss of correlations alone.

However, the spectrum Dηη′

` will still be useful, since it
measures both the loss of correlations and the change in
variance, so might be expected to be more sensitive to

changes in the CMB than the quantity 1 − C̄ηη′

` .

2. Time evolution—flat sky approximation

In analogy with Eq. (34) for δC`, we can write the
spectrum of the difference map for small increments in
time δη = η′ − η as

Dηη′

` '
〈
∂a`m

∂η

∂a∗`m
∂η

〉
(δη)2. (61)

Therefore the difference of the power spectrum, δC`,
dominates over the power spectrum of the difference map,

Dηη′

` , for small enough δη, since δC` is only proportional
to the first power of δη. Of course for a particular δη
we must calculate the coefficients of δη and (δη)2 before
we decide which method is more efficient if we are inter-
ested in a detection. The details of instrumental noise
are important and this will be discussed fully in [11].

Beyond the (δη)2 scaling, it is much more difficult to

obtain the detailed evolution of Dηη′

` than it was for δC`.
Even when we consider only the Sachs-Wolfe plateau con-
tribution, for which A1(k) = −1/5 and A2(k) = A3(k) =
0, the Bessel integrals involved in Eq. (56) cannot be an-
alytically solved. In fact, this problem is related to a
divergence that can be illuminated if we employ the flat
sky approximation described in the Appendix.

Under that approximation, which is valid over small
patches of sky and replaces the discrete indices ` and m
with the continuous two-dimensional vector `, and the
polar coordinate r with a Cartesian coordinate x par-
allel with the line of sight, we can readily calculate the
quantity on the left-hand side of Eq. (54). Using

δa(`) ≡ a(`, x′LS) − a(`, xLS) (62)

to define the difference map, where xLS and x′LS are the
comoving distances to the LSS at times η and η′, respec-
tively, and using Eq. (A.6) for the anisotropies, we find

that the result is not diagonal in `. Rather, it contains
terms proportional to δ2(α` − `

′) and δ2(α−1
` − `

′),
where we have defined

α ≡ x′LS

xLS
. (63)

Indeed this is not surprizing: in the flat sky approxima-
tion, an anisotropy on angular scale ` at xLS corresponds
to a physical mode with comoving wavevector component
`/xLS orthogonal to the line of sight. But Eq. (11) tells
us that such a mode should share correlations with the
same physical scale at x′LS, which corresponds to the an-
gular scale `x′LS/xLS. Such off-diagonal correlations are
completely suppressed in the full spherical expansion, as
we found.

The relevant quantity to calculate in the flat sky ap-
proximation is instead the power in the difference map
defined by

δ̃a(`) ≡ a(α`, x′LS) − a(`, xLS). (64)

Again applying Eq. (A.6) for a(`, xLS), we find
〈
δ̃a(`)δ̃a∗(` ′)

〉
= Dηη′

(`) δ2(` − `
′), (65)

which is diagonal in `, with the power spectrum of the
difference map given by

Dηη′

(`) ≡ C(`, η) + α−2C(α`, η′) − 2Cηη′

(`). (66)

Here C(`, η) is the flat sky approximation to the
anisotropy power spectrum, given by Eq. (A.9), and

Cηη′

(`) is the correlation function given by

Cηη′

(`) ≡ π

x′2LS

∫ ∞

−∞

dkx
PR(k)|T (k, kx)|2 cos(kxδxLS)

k3
,

(67)
where T (k, kx) is the flat sky transfer function, δxLS ≡
x′LS − xLS, and kx is the component of the comoving
wavevector parallel to the line of sight. Eqs. (64) to (67)
are the flat sky analogues of Eq. (53) to (56), respec-
tively. (The continuous argument (`) will always distin-
guish quantities in the flat sky approximation from the
corresponding exact quantities, which are labelled with
the discrete indices `m.)

Note that the integrand in Eq. (67), which is exact
apart from the flat sky approximation, is bounded in
magnitude by the integrand in Eq. (A.9) for the power
spectrum C(`, η), as we vary δxLS. In place of Eq. (60),
the normalized correlation function becomes in the flat
sky approximation

C̄ηη′

(`) ≡ Cηη′

(`)√
C(`, η)α−2C(α`, η′)

, (68)

which is bounded by |C̄ηη′

(`)| ≤ 1. In the limit of short

time interval, δxLS → 0, we have C̄ηη′

(`) → 1, corre-

sponding to perfect correlation. We also have C̄ηη′

(`) →
0 as δxLS → ∞ (recall, however, that in a ΛCDM uni-
verse, only finite conformal time is available into the fu-
ture).
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3. Special cases

Armed with the above flat sky approximation, we can
now calculate the difference map power spectrum and
correlation function in some special cases. First, con-
sider the short time interval case, δxLS → 0. Expanding
Eq. (66) in powers of kxδxLS ∼ `δxLS/xLS, where ` ≡ |`|,
we find

Dηη′

(`) = π

(
δxLS

xLS

)2∫ ∞

−∞

dkx
PR(k)|T (k, kx)|2k2

x

k3
(69)

for the power spectrum of the difference map at low-
est order in `δxLS/xLS. This expression exhibits pre-
cisely the time interval dependence that we predicted
in Eq. (61). (Note that in defining the difference map
through Eq. (64), we have fixed the observed transverse
wavevectors at both observation times, so the integrand
in Eq. (69) is independent of δη.)

The integrand in Eq. (69) resembles closely that for
the anisotropy power spectrum in Eq. (A.9), but with an
extra factor of k2

x in the numerator. In fact, using the
relation

k2 = k2
x +

(
`

xLS

)2

(70)

we can easily rewrite Eq. (69) as

Dηη′

(`) =

(
δxLS

xLS

)2[
`20C

(nS+2)(`, η) − `2C(`, η)
]
. (71)

Here C(nS+2)(`, η) is the anisotropy power spectrum cal-
culated using a modified primordial power spectrum de-
fined by

P(nS+2)
R (k) ≡

(
k

k0

)2

PR(k), (72)

where k0 ≡ `0/xLS is the “pivot scale” used to define

the primordial spectrum. (The result for Dηη′

(`) is, of
course, independent of the pivot scale chosen.) For the
special case of a power law primordial spectrum PR(k),
with scalar spectral index nS , the modified spectrum

P(nS+2)
R (k) has spectral index nS + 2; hence our choice

of notation. Eq. (71) says that, for small time incre-
ments, the shape of the power spectrum of the differ-
ence map is determined entirely by the actual anisotropy
spectrum “blue tilted”, i.e. `2C(`, η), together with the
spectrum C(nS+2)(`, η) calculated from a blue-tilted pri-
mordial spectrum, both evaluated at the same time η.
Therefore we expect that generically the shape of the
difference map spectrum Dηη′

(`) will be roughly that of
a strongly blue-tilted version of the anisotropy spectrum
C(`, η). The height of the spectrum of the difference map
is determined by the ratio δxLS/xLS.

Next, we can specialize to the case of the pure scale-
invariant (nS = 1) Sachs-Wolfe plateau, which is charac-
terized by T (k, kx) = A1(k) = const and PR(k) = const.

Eq. (A.9) gives in this case

C(`, η) =
2πPRA

2
1

`2
, (73)

in agreement with the standard Sachs-Wolfe result, to
order 1/`. The normalized correlation function is then

C̄ηη′

(`) =
`2

2x2
LS

∫ ∞

−∞

dkx
cos(kxδxLS)

k3
. (74)

In the short time interval limit, `δxLS/xLS � 1,
Eq. (69) becomes for the Sachs-Wolfe plateau

Dηη′

(`) = πPRA
2
1

(
δxLS

xLS

)2 ∫ ∞

−∞

dkx
k2

x

k3
. (75)

Note that this last integral is logarithmically divergent,
but this is just an artifact of our assumption of a scale
invariant spectrum to arbitrarily small scales [33]. Equiv-
alently, Eq. (71) cannot be applied in this case, because
the Sachs-Wolfe integral diverges for nS ≥ 3. In real-
ity, damping within the LSS imposes an effective cut-off,
with essentially no structure at wavenumbers above some
value kmax [34]. Replacing the infinite limits with ±kmax,
we can evaluate the integral in Eq. (75) with the result
(valid for `/xLS � kmax)

Dηη′

(`) ' 2πPRA
2
1

(
δxLS

xLS

)2(
ln

2kmaxxLS

`
− 1

)
. (76)

This means that the contribution to the difference map
power from the Sachs-Wolfe plateau is independent of
`, apart from a logarithmic correction. This is the `-
dependence we expect for the Sachs-Wolfe plateau for the
anisotropy power spectrum C` from a strongly blue tilted
primordial spectrum, with scalar index nS = 3, as we pre-
dicted above based on Eq. (71). Comparing Eqs. (A.9)
and (69) for the power spectra of the anisotropies and of
the difference map, and recalling the expression Eq. (A.7)
for the transfer function, we see that the “monopole” con-
tribution to the spectrum Dηη′

(`) (the part proportional
to A1) is proportional to the dipole contribution to the
spectrum C(`, η) (the part proportional to A2).

Finally, we note that we can evaluate Eq. (67) for the
correlation function analytically for all δxLS for the case
of a delta-source in k-space, PR(k) = PRδ(k− k̃). Such a
source will be very helpful in understanding the temporal
behaviour of the normalized correlation function C̄ηη′

(`)
at late times. The result for such a source is

C̄ηη′

(`) =

{
cos
[
k̃x(`)δxLS

]
if ` ≤ k̃xLS,

0 if ` > k̃xLS,
(77)

where

k̃x(`) ≡
√
k̃2 − `2

x2
LS

(78)



15

is the line-of-sight component of the source mode k̃ cor-
responding to the observed scale `. This result tells us
that the normalized correlation function is initially (at
δη = 0) unity, as expected, and subsequently oscillatory
in δη, with positive correlations alternating with anticor-
relations, and each scale ` oscillating at a different rate.
The largest angular scales (smallest `) reach anticorre-
lation first, followed by smaller scales. The peak scale,
` = k̃xLS, never becomes anticorrelated. This behaviour
can be easily understood with the assistance of Fig. 7,
by noting that at the peak ` scale we have k̃x(`) = 0, so
that the modes k which contribute to the peak ` scale are
parallel to the LSS and hence cannot produce anticorre-
lations. As ` decreases, k̃x(`) increases, i.e. k contains an
increasing component parallel to the line of sight, so the

first anticorrelations occur earlier and earlier. If we con-
sider sources at different scales k̃, Eq. (77) tells us that
the first anticorrelations occur earlier for smaller scales
(larger k̃), as expected.

4. Origin of the difference map power

As we mentioned above, the power spectrum of the dif-

ference map, Dηη′

` , contains two distinct contributions:
the loss of correlations and the change in variance be-
tween the two times of observation. To make this explicit,
and to determine which contribution is more important,
we can use Eqs. (55) and (60) to write

Dηη′

` =
(√

C`(η′) −
√
C`(η)

)2

+ 2
√
C`(η)C`(η′)

(
1 − C̄ηη′

`

)
(79)

= C`(η)

[
1

4

(
δC`

C`(η)

)2

+ 2
(
1 − C̄ηη′

`

)]
+O

(
δη

ηLS

)3

. (80)

The first line above is exact, while in the second we have
dropped higher order terms in

δC`

C`(η)
∼ δη

ηLS
(81)

[recall Eq. (35)]. With a calculation similar to that lead-
ing to Eq. (69), it is straightforward to show that, for

short time intervals (δη/ηLS � 1), we have 1 − C̄ηη′

` ∝
(δη/ηLS)2, so that the two terms in square brackets in
Eq. (80) are of the same order in δη/ηLS.

The first term in square brackets in the expression (80)
is due entirely to the change in variance δC`, while the
second term is due solely to the loss of correlations be-
tween a`m(η) and a`m(η′) [recall Eq. (59)]. But from
Eq. (71) we have

Dηη′

` ∼
(
δη

ηLS

)2

`2C`(η). (82)

Therefore, for all but the very largest angular scales
(smallest `), the second term in the brackets in (80) must

dominate over the first, and so the power spectrum Dηη′

`
is dominated by the loss in correlations. This can be
confirmed by a direct computation in the flat sky ap-
proximation, which gives

2C(`, η)
(
1 − C̄ηη′

(`)
)

= Dηη′

(`), (83)

at lowest order in δη/ηLS. This means that the flat sky

approximation toDηη′

` captures only the (dominant) con-
tribution due to loss of correlations. This is not surpriz-
ing: because of the scaling relation (30), the flat sky

difference map defined in Eq. (64) is closely related to
the “normalized” difference map defined in Eq. (58).

One further contribution to the difference map arises
if we consider the absolute temperature anisotropies δT
rather than the relative quantity δT/T , where T is
the mean temperature. Recall from Section III B that,
if we consider the absolute spectrum T 2C` instead of
the relative quantity C`, then the difference δ(T 2C`) ≡
T 2(η′)C`(η

′)−T 2(η)C`(η) receives an extra contribution
due to the expansion redshift. In that case we showed
that the extra contribution is of the same order as the
geometrical scaling part [recall Eq. (36)].

We can now repeat this calculation for the difference
map power spectrum. The difference map in absolute
temperature units is

δ(Ta`m) = T

[
− δη

(aH)−1
a`m + δa`m

]
(84)

at lowest order in δη/(aH)−1, where we have used Ṫ =
−HT . Therefore the corresponding power spectrum be-
comes

〈δ(Ta`m)δ(Ta`m)∗〉 = T 2

[
Dηη′

` +

(
δη

(aH)−1

)2

C`

+
δη

(aH)−1

(
Dηη′

` − δC`

)]
, (85)

where we have used the expressions (54), (55), and
(57). Next, retaining only terms to lowest order in
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k1

k2

δx1

δx2

FIG. 7: Two source modes, k1 and k2, with the same wavenumber k̃. Diagonal lines indicate troughs (solid) and crests
(dashed). The observer is towards the bottom. The solid horizontal line indicates the position of the LSS at initial time η.
The dotted horizontal lines indicate the position of the LSS at the first later time that produces perfect anticorrelations with
the initial time, so that hot spots (solid) line up with cold spots (hollow) and vice versa. Mode k1, which corresponds to a
smaller observed `, reaches anticorrelation before mode k2 (since δx1 < δx2). A mode k parallel to the LSS would never reach
anticorrelation, while a mode parallel to the line of sight would correspond to ` = 0 (in the flat sky approximation).

δη/(aH)−1 ∼ δη/ηLS, and using Eq. (81), we have

〈δ(Ta`m)δ(Ta`m)∗〉 = T 2

[
Dηη′

` +O

(
δη

ηLS

)2

C`

]
.

(86)
But then Eq. (82) tells us that the first term on the
right-hand side of Eq. (86) dominates for all but the
very largest angular scales [just as we argued above for
Eq. (80)], and so

〈δ(Ta`m)δ(Ta`m)∗〉 ' T 2Dηη′

` . (87)

In other words, the part of the power spectrum for the ab-
solute difference map δ(Ta`m) which is due to the expan-
sion redshift is subdominant. Thus, contrary to the case
with δC`, it is irrelevant for the difference map whether
we consider absolute or relative temperature differences
(apart from the very largest scales).

In hindsight this result could have been anticipated
directly from Eq. (84), since we expect that the change
δa`m corresponding to the time interval δη should be

δa`m ∼ δη

ηLS
`a`m, (88)

so that the first term on the right-hand side of Eq. (84),
which is due to the expansion redshift, is subdominant
on all but the largest scales. Intuitively, the change in
a`m due to a change in observation time δη grows as the
wavelength of the source modes decreases (for constant
mode amplitude), since the corresponding increase in ra-
dius of the LSS is a larger fraction of a shorter wavelength
mode. On the other hand, the change in Ta`m due to the
expansion redshift is independent of scale `.

Similarly, the contribution to the difference map due
to loss of correlations, which is described crudely by
Eq. (88), is expected to dominate over the contribution

due to changing variance C`, which is roughly indepen-
dent of `, as we showed rigorously above.

B. Time evolution from CAMB

1. Power spectrum and correlation function

We have computed the correlation function Cηη′

` from

Eq. (56) and the difference map power spectrum Dηη′

`
from Eq. (55) numerically using our modified version of
camb to extract T (k, `, rLS) at different rLS (as outlined
in Section III F), using the cosmological parameters of

our fiducial ΛCDM model. In Fig. 8 we display Dηη′

` for
the times η and η′ corresponding to today, aobs = 1, and
future times when a′obs = 1+δa, for the cases δa = 10−4,
0.001, 0.01, and 0.1. For small increments δa these curves

exhibit precisely the quadratic scaling Dηη′

` ∝ (δη)2 that

we predicted in Eq. (61), and the slope of Dηη′

` for small
` matches our analytical prediction for the Sachs-Wolfe
plateau, Eq. (76). For large increments δa the difference
map power spectrum approaches the sum of the individ-
ual power spectra as the correlation function decays to
zero, as we expect according to Eq. (55). Generally, these
curves exhibit the heavily blue-tilted form we predicted
in the previous subsection, due to the more rapid loss of
correlations on smaller angular scales.

Also shown in Fig. 8 is the curve calculated from
the flat-sky analytical expression, Eq. (71), for the case
δa = 10−4. This curve coincides extremely well with
the numerical result for ` >∼ 20. The departures at large
scales are due to two factors. First, the flat sky approx-
imation is poor at those scales. Second, Eq. (71) was
derived under the assumption that all anisotropies were
primary, which is not the case for the ISW contribution.
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FIG. 8: Difference map angular power spectrum Dηη′

` calcu-
lated from our modified version of camb (solid lines) for the
two times corresponding to aobs = 1 and a′

obs = 1 + δa, for
the cases (top to bottom) δa = 0.1, 0.01, 0.001, and 10−4.
Also shown is the analytical result (dashed curve) calculated
using Eq. (71) for δa = 10−4.

In Fig. 9 we plot the normalized correlation function

C̄ηη′

` , calculated using our modified version of camb for
our fiducial ΛCDM model, between the set of a`ms ob-
served at η and η′. Here, η corresponds to an observation
of the CMB sky today at aobs = 1 and η′ to an obser-
vation at a′obs = 1 + δa, where we illustrate the cases
δa = 0.001, 0.01, 0.03 and 0.1. For the smallest inter-
val δa, we find very strong correlation between the two
sky maps, as expected. The correlations fall off as δa
increases, with the sky maps becoming somewhat anti-

correlated for intermediate intervals before C̄ηη′

` decays
to zero at the largest intervals.

The general features of the correlation function can be
understood by considering the detailed arguments pre-
sented in the previous subsection. For δa � 1 the in-
crease in the LSS radius corresponding to the interval
δa is δrLS = H−1

0 δa. For the case of δa = 0.01, using

H0 = 73 km s−1Mpc−1, we find δrLS = 40.9 Mpc, cor-
responding to a comoving wavenumber k = 0.15 Mpc−1.
This wavenumber is much larger than the wavenumber
of the first acoustic peak, given by k = π/sLS = 0.021
Mpc−1, where sLS ' 150 Mpc is the sound horizon at
last scattering. Hence, for this δa, we are essentially
sampling the same set of inhomogeneities which give rise
to the first acoustic peak at both times, and so we expect
fluctuations to be correlated on these scales. Indeed, we

see from Fig. 9 for δa = 0.01 that C̄ηη′

` ' 0.9 for the
first acoustic peak scale, ` ' 220. Extending this argu-

ment, we expect that C̄ηη′

` → 1 as ` → 0 for fixed δa,
as the largest scale (smallest k) features should be most

correlated, and of course we similarly expect C̄ηη′

` → 1
as δa→ 0 for fixed `.

The presence of anticorrelations was discussed in Sec-
tion IV A, where we derived the behaviour of the cor-
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FIG. 9: Normalized correlation function C̄ηη′

` between the
CMB sky observed today (a = 1) and at a = 1 + δa, calcu-
lated with our modified version of camb, for δa = 0.001 (top
panel, solid curve), 0.01 (top, dashed), 0.03 (bottom panel,
solid), and 0.1 (bottom, dashed). Anticorrelations are seen to
develop as δa increases, before the correlation function decays
to zero for large δa.

relation function in the flat sky approximation for the
case of a delta-source at wavenumber k = k̃. The re-
sult, Eq. (77), exhibited oscillating positive and negative
correlations, with the first anticorrelations occuring ear-
lier for smaller scales (larger k̃), as we have confirmed
here for a realistic spectrum using camb. Eq. (77) also
described anticorrelations occuring earlier for smaller `,
with k̃ fixed. This feature is not visible in the actual
correlation function plotted in Fig. 9 since the real pri-
mordial power spectrum is far from a delta-source. If we
consider a small subset of k modes, e.g. those correspond-
ing to the fourth acoustic peak scale, then some of those
modes will be aligned nearly parallel to our line of sight
and hence produce early anticorrelations at small ` for
some δa (recall Fig. 7). However, there are many more
modes due to power at smaller k that are still tightly

correlated at the same δa and hence result in C̄ηη′

` ' 1
for small `.
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2. Sky maps

Assuming Gaussianity, generating a single realization
of a set of a`ms usually involves drawing each a`m(η) in-
dependently from a Gaussian distribution with variance

C`(η). With the correlation function Cηη′

` , we have a
measure of the degree of correlation between a`ms at two
different times. Hence, given a set of a`ms at the first
time, the variance of the distribution at each time, and
the correlation between them, one can generate a real-
ization of a second set of a`ms at some later time.

Formally, we draw the new set of a`ms from the likeli-
hood function

P (Xi) =
1

2π|C|1/2
exp

(
−1

2
XT

i C
−1Xi

)
, (89)

with

C =

(
Cηη

` Cηη′

`

Cηη′

` Cη′η′

`

)
, (90)

where Xi is a random 2-vector containing each a`m coef-
ficient at η and η′, and we have relabeled the variance of

the a`m(η) distribution at each time by Cηη
` and Cη′η′

` .
We illustrate the likelihood function in Fig. 10 for the

a2m and a5m modes, where η corresponds to an observa-
tion at aobs = 1 and η′ to aobs = 2.0. The a2m coefficients
are more tightly correlated than their a5m counterparts,
since for such a large δa the correlation rapidly falls off as
` increases. It is also noticeable that the contours of the
likelihood are slightly elongated vertically, due to the in-
creased variance of a`m(η′) on large scales resulting from
the increasing ISW effect.

Therefore, our method of generating CMB sky maps
involves firstly generating a random realization at some
initial time, and then generating all subsequent realiza-
tions by mapping the a`ms using the correlation function.
For large δa, where the a`ms are uncorrelated, we are es-
sentially selecting a completely new set of coefficients.

For small δa, C̄ηη′

` approaches unity and the a`ms map
trivially according to a`m(η) → a`m(η′). At some in-
termediate intervals, anticorrelation favours a reversal of
sign of the a`ms, i.e. hot spots are mapped to cold spots
and vice versa.

We generate maps using the healpix code with nside =
512, corresponding to a pixel resolution of 6.87 arcmin.
We present a series of these maps in Fig. 11, plotting the
fractional temperature fluctuation δTi/T at each pixel i.
For presentational clarity we show a patch of sky covering
∼ 1000 square degrees, and use modes up to `max =
1000. We generate the first map at aobs = 1, and show
subsequent maps at aobs = 1+δa, where δa = 0.001, 0.01,
0.1, and 1.0. We also show the difference map for each
observation relative to aobs = 1. We have checked that
the power spectra reconstructed from our simulated sky
maps agree with the intended spectra to within sample
variance.
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FIG. 10: Distribution from which the a`ms are drawn. Here,
η corresponds to aobs = 1 and η′ to aobs = 2.0, and contours
show the 2σ error ellipse. The distribution of a2m is shown
by the solid contour, which has a correlated set of variances
C2(η) and C2(η

′). The distribution of a5m, shown by the
dotted contour, has a smaller variance at both times and these
are much less correlated.

Visually, the δa = 0.001 map is extremely similar to
the initial map. The variance of the map, given by

〈(
δT

T

)2
〉

map

=
1

Npix

Npix∑

i

(
δTi

T

)2

, (91)

is over four orders of magnitude higher than the differ-
ence map variance. For δa = 0.01, the primary temper-
ature fluctuations have a variance around two orders of
magnitude more than the difference map, and changes in
small scale structure (from the initial map) are clearly
apparent.

For δa = 0.1 and 1.0, the variance of the difference
is actually larger then the temperature fluctuations at
that time, and acoustic scale structures are visible in the
difference. This is understandable from our discussion of
the correlation function—at these times the correlation
on all but the very largest scales has dropped to zero, so
that the variance of the difference approaches the sum of
the initial and final map variance [recall Eq. (55)].

Finally, in Fig. 12 we present a simulated sky map
for the asymptotic future. This map clearly differs from
today’s map, with the dramatic increase in large scale
power due to the ISW effect readily apparent.

High resolution versions of these sky
maps, together with animations illustrating
the evolution of the CMB, are available at
http://www.astro.ubc.ca/people/scott/future.html.

http://www.astro.ubc.ca/people/scott/future.html
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−1.3e−05

FIG. 11: Simulated map realizations (top and left panels) and difference map (relative to aobs = 1) (right panels) for δa = 10−3

(middle panels, corresponding to a 13 Myr interval) and 10−2 (bottom panels, 130 Myr). Note the vastly different power scales
between the sky and difference maps. The maps presented here are for a patch of sky covering ∼ 1000 square degrees. High
resolution version available at http://www.astro.ubc.ca/people/scott/future.html.

http://www.astro.ubc.ca/people/scott/future.html
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0.00020−0.00020 0.00024−0.00019

Difference

−0.00020 0.00020 −0.00021 0.00021

a = 2

a = 1.1

FIG. 11: (Continued.) Simulated map realizations (left panels) and difference (right) for δa = 0.1 (top) and 1.0 (bottom). High
resolution version available at http://www.astro.ubc.ca/people/scott/future.html.

V. DISCUSSION

We have systematically described the temporal evolu-
tion of the CMB, beginning with the mean temperature
and dipole, and then moving to the anisotropy power
spectrum. We found that the evolution of the spectrum
is described at all but the largest angular scales by a
simple scaling relation. At large scales the ISW contri-
bution grows to dominate even the first acoustic peak at
late times. The extra optical depth due to reionization
is negligible into the future.

We have introduced a correlation function between the
CMB sky maps at different times which quantitatively
encodes the intuitive notion that for small enough obser-
vation time intervals δη and for source modes with small
enough wavenumber k, the anisotropies observed at the
two times should be very similar. Closely related is the

power spectrum of the difference map Dηη′

` . We showed
that the difference δC` scaled like δη for small intervals,

while Dηη′

` scaled like (δη)2. The sensitivity of Dηη′

` to
changes in the sky maps is dominated by the loss of cor-
relations at small angular scales, and the contributions
from the change in variance C` as well as the change due
to expansion redshift, if we consider absolute quantities,
are subdominant. All of our numerical results were in-
dependently confirmed analytically, and the validity of
the necessary analytical approximations was elucidated
by the numerics.

The quantities we described in this work will be crucial
to answering the question of the experimental detectabil-
ity of a change in the CMB, or, more precisely, the ques-
tion “how long must we wait to be able to confidently
observe a change?” While the different time interval scal-

ings we found for δC` and Dηη′

` might suggest that at-
tempting to measure δC` would be much more favourable
for small δη, the situation is more subtle. In future work
[11] we will quantify the detectability of changes in the
CMB.

http://www.astro.ubc.ca/people/scott/future.html
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FIG. 12: Simulated map realization for the asymptotic future. High resolution version available at
http://www.astro.ubc.ca/people/scott/future.html.

We have focussed entirely on primordial anisotropies
here. There are additional issues which arise when
one considers secondary anisotropies, like gravitational
lensing and Sunyaev-Zel’dovich effects, as well as time-
dependent foregrounds of course. Such considerations
would depend much more heavily on less well understood
non-linear scales of structure, and so we leave this for oth-
ers to pursue. We expect that there is plenty of time to
pursue these ideas before any of these variations would
be detectable.
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APPENDIX: THE FLAT SKY APPROXIMATION

The Bessel functions appearing in the various expres-
sions relating primordial fluctuations to observed CMB
anisotropies severely limit the extent to which analytical

results can be obtained. However, a simple approxima-
tion scheme, based on treating a small patch of the sky
(and hence of the spherical LSS) as flat, allows us to
use ordinary plane wave expansions and thereby to do
“CMB without Bessel functions”. This small-angle ap-
proximation is expected to be accurate up to terms of
order 1/`, so that it is entirely appropriate for describing
the acoustic peak structure of the CMB.

The flat sky approximation begins [20] [or better refer-
ence?] by replacing Eq. (13) relating the observed tem-
perature anisotropies with the perturbation functions on
the LSS, φi, in the strong coupling/free streaming ap-
proximation, by

δT (θ, η)

T (η)
= F (φi(xLS, xLSθ, ηLS)). (A.1)

Here θ is a 2-dimensional vector whose components rep-
resent the angular displacement in two orthogonal direc-
tions from the centre of the small patch of sky. In the
Cartesian comoving coordinate vector (xLS, xLSθ), the
first component is parallel to, and the second two or-
thogonal to, the line of sight to the centre of the patch.
The coordinate value xLS = η− ηLS refers to the comov-
ing distance to the LSS from the point of observation.
Analogously to Eq. (14) we can write

F (φi(xLS, xLSθ, ηLS)) = φ1(xLS, xLSθ, ηLS) +
∂

∂xLS
φ2(xLS, xLSθ, ηLS) (A.2)

for the monopole and dipole contributions. In place of the spherical harmonic expansion for the temperature fluctu-

http://www.astro.ubc.ca/people/scott/future.html
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ation, Eq. (16), we here use a 2-dimensional Fourier expansion in terms of the continuous vector ` which replaces `
and m:

δT (θ, η)

T (η)
=

1

2π

∫
d2

` a(`)eiθ·`. (A.3)

The statistical properties of the coefficients a(`) can be determined in a manner completely analogous to that used
for the spherical case in Section IIIA. Fourier expanding the perturbations φi according to

φi(xLS, xLSθ) =
1

(2π)3/2

∫
d2

k⊥dkx φi(k)eik⊥·xLSθeikxxLS , (A.4)

where kx and k⊥ are Cartesian components of the wavevector k parallel and orthogonal to the line of sight, respectively,
allows us to identify

` = xLSk⊥. (A.5)

This tells us that `, the flat sky approximation to the spherical indices ` and m, is directly proportional to the
component of the LSS fluctuation wavevector orthogonal to the line of sight, and that the relationship scales with
the conformal time (or comoving distance) to the LSS, exactly as expected. Since k⊥ is only a component of the
wavevector k, Eq. (A.5) encodes the familiar fact that the mapping from k to ` is not one-to-one—rather, a range of
k’s is mapped to a particular ` value.

Using these expressions, we find

a(`, η) =
1√

2πx2
LS

∫ ∞

−∞

dkxR(kx, `/xLS)TFS(k, kx)eikxxLS , (A.6)

where the flat sky transfer function is

TFS(k, kx) ≡ A1(k) + ikxA2(k), (A.7)

and the Ai are again defined by Eq. (19). Finally, using
the statistical properties of R encoded in Eq. (11), the
equal-time correlation function of a(`) becomes

〈a(`, η)a∗(` ′, η)〉 = C(`, η)δ2(` − `
′), (A.8)

where

C(`, η) ≡ π

x2
LS

∫ ∞

−∞

dkx
PR(k)|T (k, kx)|2
(k2

x + k⊥
2)3/2

. (A.9)

Again, we find that the coefficients a(`) for different
modes ` are uncorrelated.

Notice that the time dependence of C(`, η) is carried in
the prefactor 1/x2

LS as well as in the terms containing k⊥

through Eq. (A.5) (if ` is held constant), whereas in the
spherical case, Eq. (25), the Bessel functions carry the
time dependence. Also, the complete absence of oscilla-
tory functions in Eq. (A.9) means that it will be much
easier to evaluate the CMB spectrum in the flat sky ap-
proximation than in the spherical case, both analytically
and numerically.

In particular, we can easily apply Eq. (A.9) to rederive
the scaling relation Eq. (30). Eq. (A.5) tells us that k⊥

is invariant under the transformation xLS → x′LS and
` → `

′ = `x′LS/xLS. Therefore, Eq. (A.9) immediately
implies that

`′2C(` ′, η′) = `2C(`, η), (A.10)
where ` ≡ |`|, regardless of the form of the transfer func-
tions Ai(k) or of the primordial power spectrum PR(k).
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