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COURSE OUTLINE 
 
1. Radiation 

properties of radiation – photons, coherence 
characterization of radiation – units, photometric systems 
types and sources of radiation – thermal, nonthermal  

 
2. Detectors  
  fundamentals – coherent and incoherent detection, photon statistics 
  measurement – signal-to-noise ratio, DQE, RQE 
  single channel detectors – optical, IR, X-ray 
  multichannel detectors – CCDs, multiplexed arrays, intensifiers 
  coherent detection – radio 
 
3. Telescopes 

 introduction – principles, types 
 image formation – Gaussian imaging, aberrations 
 modern telescopes – optical and mechanical design, active optics 
 

4. Imaging  
 linear theory – OTF, MTF, 
 diffraction – Fourier optics 
 atmospheric turbulence – theory, propagation effects 
 adaptive optics – principles and techniques 

interferometry – Fizeau and Michelson, aperture synthesis 
 
5. Spectroscopy 

 fundamentals – principles, parameters 
 spectrographs – conventional, echelle, MOS, FTS, Fabry Perot 
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1 Radiation 
This course focuses primarily on the techniques of detection, measurement and 
interpretation of electromagnetic radiation from astronomical sources. While this is a 
broad scope, it does not entirely exhaust the opportunities available to observational 
astronomers. Important results are also obtained by measurements of fluxes of particles 
such as cosmic rays, neutrinos, and the solar wind. Observational limits on gravitational 
waves are approaching theoretically interesting levels. However, the great bulk of our 
knowledge of the universe comes from electromagnetic radiation. 

1.1 Properties of radiation 
In order to interpret observations and draw conclusions in an astrophysical context, it is 
necessary to have a basic understanding of the physics of the radiation itself. We 
therefore begin with a brief review of the fundamental properties of electromagnetic 
radiation. 

1.1.1 Photons 
The fundamental quantity of electromagnetic radiation is the photon. A photon is 
uniquely characterized by its energy E, momentum p and spin or polarization vector e.  
More than one photon can have the same values of these quantities. Such photons are 
indistinguishable.  The energy of a photon is proportional to its frequency ν (the 
frequency of oscillation of the associated electric and magnetic fields), 
 
 E hν= . (1.1) 
 
The constant of proportionality is called Planck’s constant and has the approximate 
value 346.626 10 Jsh −= × . Alternatively, we may write 
 
 E ω= �  (1.2) 
 
where 2ω πν≡  is the angular frequency of the photon and / 2h π≡� . 
 
There is also a wavelength λ associated with every photon. The product of wavelength 
and frequency is a constant c, the speed of light in vacuum.  
 
 cλν =  (1.3) 
 
The propagation vector k, also called the wave vector, is a vector which points in the 
direction of propagation and has magnitude 

 2k π
λ

= . (1.4) 
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The wave vector is related to the momentum of the photon, 
 
 =p k� . (1.5) 
 
These relations can readily be written in four-dimensional form. The four-dimensional 
wave vector, defined by 
 
 ( , )k cω≡ k

�

 (1.6) 
 
is proportional to the four-momentum 
 
 ( / , )p E c k≡ =p

��
� . (1.7) 

 
The photon has two orthogonal spin states, which we denote by +  and − , 
corresponding to clockwise and counterclockwise rotation of the electric vector about the 
direction of propagation. A photon in either of these two states is said to have circular 
polarization. A photon may also be in a linear superposition of these two states 
 
 2 2, 1a b a b= + + − + =e  (1.8) 
 
where a and b are complex numbers. 
 
States with equal weighting ( 1/ 2a b= = ) are said to be linearly polarized because 
the electric vector oscillates in a fixed plane. 
 
When photons travel through a transmitting medium, interactions with the atoms or ions 
in the medium cause phase shifts that change the phase velocity of the radiation. In this 
case (1.3) becomes 
 ncλν =  (1.9) 
 
where n  is the index of refraction of the medium. The value of n  is frequency-dependent 
and is generally less than one. 
 
In a medium, the vacuum relation /k cω=  is replaced by the nonlinear equation 

/ ( )k n cω ω=  called the dispersion relation. The radiative energy propagates at a speed 
given by the group velocity 

 
1

g
dk
d

υ
ω

−
 =  
 

 (1.10) 

 
The group velocity never exceeds the speed of light in vacuum. 
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1.1.2 Coherence 
In general, radiation that we observe is not monochromatic, but contains a range of 
frequencies ν∆ . The electromagnetic waves will therefore lose phase coherence (the 
ability to interfere) over a longitudinal distance  
 
 2 /z Rλ λ λ∆ ≈ ∆ =  (1.11) 
 
called the temporal coherence length. Interferometers, which combine radiation 
traveling along two or more different paths, must therefore ensure that the path lengths 
are equal to within a fraction of this distance – which is just a few wavelengths for 
broadband radiation.  
 
In general, radiation that we observe does not not originate from a perfect point source, 
but from a source having some finite angular size θ∆ . The wavefronts of such radiation 
are tilted with respect to each other by angles as large as θ∆ . Therefore, phase coherence 
is lost over a transverse distance  
 /x λ θ∆ ≈ ∆  (1.12) 
 
called the spatial coherence length. 
 
Note that both of these relations can be obtained from the Heisenberg uncertainty 
relations by considering the photon to be in a superposition of states having an 
uncertainty in the energy of E h ν∆ = ∆  and an uncertainty in the transverse component of 
the momentum of xp k θ∆ = ∆� . 

1.1.3 Flux and intensity 
The primary physical quantities of interest to astronomers are summarized in Table 1.1. 
 

Table 1.1  Fundamental Radiation Measures 
 
Name Symbol Units Description 
Flux F Wm-2 Radiant power per unit ⊥ area 
Specific Flux Fν Wm-2Hz-1 Flux per unit frequency interval 
Intensity I Wm-2sr-1 Flux per unit solid angle 
Specific Intensity Iν Wm-2sr-1Hz-1 Intensity per unit frequency interval 
 
 
Flux generally is dependent on position. It usually decreases with distance from the 
source. Intensity, however, is affected only by absorption or emission of light and by 
frequency shifts (Doppler effect). If there is no emission or absorption along the line of 
site, it follows from Liouville’s Theorem (the phase space density of photon number is 
conserved) that the quantity Iν /ν3 is constant. 
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A common unit of specific flux is the Jansky (Jy).  One Jansky is defined to be 10-26 
Wm-2Hz-1. 
 
Radio astronomers frequently use the terms flux density ( )S and brightness ( )B  to refer 
to specific flux and intensity.  
 
For Fν and Iν, we can define corresponding quantities Fλ and Iλ that depend on 
wavelength rather than frequency. These have units of flux and intensity per unit 
wavelength. 
 
Because the power contained between two frequencies ν and ν + dν must be the same as 
the power contained between the corresponding wavelength intervals λ and λ + dλ, we 
have the relations 

 
F d F d

I d I d
ν λ

ν λ

ν λ
ν λ

=

=
 (1.13) 

 
Using (1.2), we obtain 

 

2

2

,F F
c

I I
c

λ ν

λ ν

ν

ν

=

=
 (1.14) 

 
The quantities F Fν λν λ=  are often used, particularly when comparing the power emitted 
by a source at different wavelengths.  

1.1.4 Radiative transfer 
When radiation travels through an emitting or absorbing region, the intensity changes.  
The rate of change of intensity with distance s is given by the equation of radiative 
transfer, 

 vdI I j
ds ν νµ= − +  (1.15) 

 
The first term on the right hand side represents loss by absorption. The energy lost must 
be proportional to the energy present in the radiation. The constant of proportionality 
µ(ν) is called the absorption coefficient. The second term represents emission of 
radiation into the beam. This is independent of the intensity and is described by the 
emission coefficient jν. 
 
The integral of the absorption coefficient along the line of sight is called the optical 
depth, 
 dsτ µ= ∫  (1.16) 
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If τ is much greater than unity, most of the radiation is absorbed and we say that the 
absorbing region is optically-thick (opaque). If If τ is much less than unity, little of the 
radiation is absorbed and we say that the absorbing region is optically-thin (transparent). 

1.1.5 Astronomical magnitudes 
It is convenient to use a logarithmic measure of flux called astronomical magnitude. 
Magnitudes were first introduced by Hipparchos and Ptolemy to describe the relative 
brightness of stars (the human eye has a logarithmic response to light). The modern 
magnitude scale was defined by Pogson in 1854. He found that a logarithmic base equal 
to the fifth root of 100, which has a value of about 2.51, matched the ancient Greek 
system quite well. The zero point of the magnitude system is chosen in such a way that 
the magnitude of a particular standard star is exactly zero. This leads to the definition 
 
 2.5log( / )Vegam F F= −  (1.17) 
where 
 ( )F F W dν ν ν≡ ∫  (1.18) 
 
and the function ( )W ν  describes the response of the measuring instrument as a function 
of the frequency of the incident radiation. Vega is a star (spectral type A0V) defined to 
have 0m =  in all wavelength bands (Vega has now been superceded by a set of several 
standard stars). 
 
By analogy, on can define a logarithmic measure of intensity called surface brightness 
and usually denoted by the symbol µ. 
 
 2.5log( / )VegaI Iµ = −  (1.19) 
 
where VegaI  is the intensity that would result if the light from Vega was spread uniformly 
over 1 square arcsec. of sky. 

1.1.6 Photometric bands 
The wavelength band of a photometric system is the spectral region over which the 
function ( )W ν  is large enough to make a significant contribution to the integral in (1.18)
Wavelength bands are often characterized by central wavelength and bandwidth. If the 
bandwidth is sufficiently small, and the specific flux of the object is a slowly varying 
function of frequency, we can take Fν outside the integral to get a direct relationship 
between magnitude and the average specific flux (over the wavelength band). 
 
 2.5logm F constν= − +  (1.20) 
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where const denotes a constant which depends both on the choice of wavelength band 
and the units of Fν . Clearly, the magnitude defined in this way is meaningful only if the 
wavelength band is specified. 
 
The corresponding relation for surface brightness is 
 
 2.5log 26.57I constνµ = − + +  (1.21) 
 
where the numerical factor converts steradians to square arcsec and const has the same 
numerical value as in (1.20). 
 
Many standard wavelength bands are in use today. Most common is the Johnson (or 
“UBV...”) system, summarized in Table 1.2, which divides the optical and near-infrared 
spectral region into nine relatively broad bands.  The resolving power, defined by  
 
 /R λ λ= ∆  (1.22) 
 
where λ is the central wavelength and λ∆ is the bandwidth, is about 5 for the Johnson 
system. Figure 1.1 shows the wavelength response of the Johnson UBV filters. 
 

Table 1.2. Johnson Photometric Bands 

 
Band 
 

Central λ 
(um) 

Bandwidth 
(um) 

Fν  (m = 0) 
(Wm-2Hz-1) 

ABm m−  

U 0.36 0.07 1.88 e-23 0.71 
B 0.44 0.10 4.65 e-23 -0.27 
V 0.55 0.09 3.95 e-23 -0.09 
R 0.70 0.22 2.87 e-23 0.25 
I 0.90 0.24 2.24 e-23 0.52 
J 1.25 0.38 1.77 e-23 0.78 
K 2.2 0.48 6.29 e-24 1.90 
L 3.4 0.70 3.12 e-24 2.66 
M 5.0 1.2 1.83 e-24 3.24 
 
 
Differences between magnitudes obtained in different bands, for the same source, are 
called colors. These are clearly a measure of flux ratios between different wavelengths, 
and are therefore related to the slope of the spectrum. 
 
In practice, the spectral response of the telescope, detector and filters that one uses is not 
exactly the same as that used to define the standard system. But by observing a number of 
standard stars, along with the objects of interest, it is possible to transform the observed 
instrumental magnitudes to the standard system. This is a part of the technique of 
photometric data reduction. 
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Figure 1.1. Transmission curves of the Johnson U, B and V filters. (Adapted from 
Johnson, 1952, ApJ 114, 522.) 

1.1.7 AB magnitudes 
While standard photometric systems provide a convenient way to measure broadband 
fluxes and colours of objects, they are not well suited to observations at higher spectral 
resolution. The measurement of flux as a function of frequency or wavelength is called 
spectrophotometry.  The result can be described by specifying Fν or Iν as a function of 
frequency, or Fλ or Iλ as a function of wavelength. However, it is often more convenient 
to use a logarithmic measure. For this reason, the AB magnitude system is defined by 
 
 2.5log 56.1ABm Fν= − −  (1.23) 
 
The constant is chosen so that the AB magnitude of Vega is zero at a wavelength of 550 
nm. It therefore corresponds approximately to the Johnson V magnitude at that 
wavelength. Like Fν, the AB magnitude is a continuous function of frequency or 
wavelength. It deviates from the broadband magnitudes at other wavelengths. 
 
One milli-Jansky (mJy) corresponds to 16.4ABm = , one micro-Jansky (uJy) to 

23.9ABm =  and one nano-Jansky (nJy) to 31.4ABm = . The approximate differences 
between AB magnitudes and Johnson magnitudes are listed in the last column of Table 
1.2. 
 



ASTRONOMICAL AND ASTROPHYSICAL MEASUREMENTS 

14 

1.2 Types and sources of radiation 
The spectrum (the flux as a function of frequency or wavelength) of radiation is an 
important diagnostic of physical conditions in the source. The following types of 
radiation are most important in astrophysics. A detailed description can be found in 
Tucker, Radiation Processes in Astrophysics. 

1.2.1 Line radiation 
Electronic transitions within atoms result in the emission or absorption of radiation at 
specific frequencies, primarily in the visible, UV and near infrared (NIR) regions of the 
spectrum. Emission lines are produced by a hot gas and absorption lines occur when 
radiation with a continuous spectrum passes through a gas. The frequency of the line is 
related to the transition energy E by (1.1). Examples of emission and absorption lines in 
stellar spectra are shown in Figure 1.2. 
 
The lines have an intrinsic width ∆ν that is inversely related to the lifetime ∆t of the 
excited state according to the Heisenberg uncertainty principle: 
 
 E t h∆ ∆ ≈  (1.24) 
therefore, 

 1E
h t

ν ∆∆ = ≈
∆

 (1.25) 

 
Further broadening occurs from atomic motions, electrostatic perturbations, Doppler 
shifts, etc. Analysis of the resulting spectra may provide information about the chemical 
composition, temperature, pressure, velocities, and excitation state of the emitting or 
absorbing region. 
 
Rotational and vibrational transitions in molecules produce lines in the infrared region of 
the spectrum. These provide an important diagnostic of the densities and temperatures of 
molecules in interstellar space.  
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Figure 1.2 Spectra of hot stars, showing absorption and emission lines. The Balmer series 
of Hydrogen is particularly prominent. (Silva & Cornell, 1992, ApJS, 81, 865). 
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1.2.2 Black-body radiation 
Black body radiation is emitted by any perfectly absorbing body or gas cloud that is in 
thermal equilibrium at some temperature T. The specific intensity of this radiation is 
given by the Planck formula 

 [ ]
3

1
2

2 exp( / ) 1hI h kT
cν
ν ν −= −  (1.26) 

 
where k is Boltzmann’s constant ( 23 11.381 10 JKk − −≈ × ). 
 
By integrating this expression over frequency and solid angle, one obtains the flux 
passing through a surface, 

 
2

4

cosF d d I

I
T

ν
π

ν θ

π
σ

= Ω

=
=

∫ ∫

 (1.27) 

 
where 5 4 3 2 8 -2 -42 /15 5.670 10 Wm Kk h cσ π −= ≈ ×  is the Stefan-Boltzman constant. The 
cosine factor is needed because Iν is energy per steradian per unit area perpendicular to 
the direction of propagation. 
 
For isotropic radiation, the energy density is simply related to the intensity. Iν is just the 
energy per square metre per second contained in photons of frequency ν for any 
particular direction. In one second, these photons travel a distance of c metres and 
therefore contribute /I cν to the energy density. Integrating over all directions (4π 
steradians) gives the energy density per unit frequency 
 

 4 .I
cν ν
πρ =  (1.28) 

 
The total energy density follows by integration over frequency,  
 

 44 4I T
c c
π σρ = =  (1.29) 

 
The most celebrated astrophysical example of black-body radiation is provided by the 
cosmic microwave background (CMB), which is a relic from a time when the universe 
was both hot and opaque. This radiation is observed to have a perfect black-body 
spectrum (to within the measurement errors) with a characteristic temperature of 2.73K. 
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1.2.3 Bremsstrahlung 

In an ionized gas, electrons move freely, but are subject to electrostatic deflection when 
they pass near ions. Such an encounter results in a net acceleration of the electron in a 
direction perpendicular to its motion. As a result, electromagnetic radiation is produced, 
known as bremsstrahlung (German for “braking radiation”) or free-free emission. 
 
Bremsstrahlung has a flat spectrum (nearly constant Fν) over a wide frequency range. At 
high frequencies, /kT hν ∼ , there is an exponential cutoff because the photon energies 
are too high for the photons to be easily produced. At low frequencies, the gas becomes 
optically thick (opaque) due to the inverse process (in which a photon is absorbed by an 
electron in the electric field of an ion). At these frequencies the radiation has the same 
spectrum and intensity as a black body. 
 
The X-rays emitted by clusters of galaxies is due to bremsstrahlung, and indicates the 
presence of intracluster gas at a temperature of order 106 K. 

1.2.4 Synchrotron radiation 
Synchrotron radiation is produced by relativistic electrons (electrons moving with speed 
v c≈ ) in a strong magnetic field. The Lorentz force causes the electrons to move in a 
helical orbit along magnetic field lines. The constant acceleration produces radiation. If 
the magnetic field is orderly, the resulting radiation is often highly polarized. 
 
Synchrotron radiation is found to have a power-law spectrum over a wide range of 
frequencies. The spectral index α is defined by the equation 
 
 F α

ν ν −∝ . (1.30) 
 
The power law spectrum is a reflection of the distribution of electron energies, which is 
generally well represented by a power law ( )f E E β−∝ . If β  is the index of the electron 
energy distribution, then it can be shown that ( )1 / 2α β= − . The highest energy 
electrons produce the highest energy photons and vice versa. They also radiate the most 
power and therefore cool faster. The power radiated by an electron of energy 2

em cγ  is 
 

 2 2
0

32
9 BP r cπ ρ γ= , (1.31) 

 
where me is the electron mass,  γ  is the Lorentz factor, 2 2 2

0 / er e m c=  is the classical 
electron radius, e is the electron charge and 2 / 8B Bρ π= is the energy density in the 
magnetic field B. 
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At low frequencies the radiation is self absorbed (by the inverse process) and the cloud is 
optically thick. In this region the spectrum has the form 
 
 5/ 2Fν ν∝  (1.32) 
 
This differs from the black-body spectrum because the radiation is non-thermal (the 
electron gas is not in thermal equilibrium). Of course ions also contribute to synchrotron 
radiation, but because their masses are much greater than those of the electrons their 
acceleration is much smaller so they radiate comparatively little power. 
 
Synchrotron radiation is important in many astrophysical objects. It forms the bulk of the 
radiation emitted by radio galaxies, relativistic jets, and some supernova remnants, such 
as the Crab Nebula. 

1.2.5 Inverse Compton radiation 
Inverse Compton radiation is produced when energetic electrons collide with low-energy 
photons, thereby boosting them to higher energy. The CMB provides a copious source of 
target photons (about 400 per cubic centimeter in the Universe today). Like synchrotron 
radiation inverse Compton radiation has a power-law spectrum with a turndown at high 
energies (the quantum cutoff) and at low energies (self absorption due to the inverse 
process – the Compton effect). The power radiated by a single electron of energy 2

em cγ  
is 
 

 2 2
0

32
9

P r c γ
π ρ γ= , (1.33) 

 
where ργ is the energy density of target (CMB) photons. 
 
Note the similarity of this formula with that for synchrotron radiation. This is not 
accidental – the electromagnetic force results from the exchange of virtual photons, so 
synchrotron radiation can also be regarded as resulting from collisions between electrons 
and (virtual) photons. 
 
Inverse Compton radiation is important in the most energetic astrophysical phenomena. 
Quasars, active galactic nuclei, gamma ray bursts may radiate much of their energy by 
this process. 
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Exercises 
 
1.1 A perfect polarizing filter transmits only linearly polarized light with electric 

vector parallel to the direction of polarization of the filter. Suppose such a filter is 
inserted in a beam of unpolarized light (light having no net polarization) of 
intensity I. 

 
a) What is the intensity of the light transmitted by the polarizer. 
b) Suppose that a second polarizer is inserted with polarization direction oriented 

90 degrees to that of the first polarizer. What is the intensity of light 
transmitted by the second polarizer? 

c) Suppose now that a third polarizer is inserted between the two, with 
polarization direction oriented 45 degrees to each of the others. What is the 
intensity of light transmitted by the entire system? 

 
1.2 Derive equations (1.11) and (1.12) using the Heisenberg uncertainty principle 
 
1.3 Liouville’s theorem states that during collisionless evolution, the phase space 

density of particles in a gas remains constant. Show that the quantity 3/Iν ν  is 
proportional to the number density of photons in phase space and is therefore 
conserved by all processes that neither create nor destroy photons. 

 
1.4 Using (1.26), determine the frequency and wavelength that correspond to the 

maximum intensity of the CMB. Estimate the number of  CMB photons per cubic 
centimeter in the Universe today. 

 
1.5 Light propagating to an observer on Earth is partially absorbed by dust particles in 

the atmosphere, a phenomena called extinction The extinction is wavelength 
dependent, being greatest at short wavelengths (which is why sunsets are red). 
Ignore the curvature of the Earth, and assume that the dust density in the 
atmosphere is a function only of altitude. Using the equation of transfer, show that 
the extinction can be represented by the formula 0 secm m k Z= + , where m  is the 
observed magnitude, 0m  is the true magnitude (ie. in the absence of extinction), 
k  is a wavelength-dependent constant called the primary extinction coefficient, 
and Z  is the zenith angle (the angle between the line of sight to the object and 
the vertical direction). 
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2 Detectors 
Detectors are devices used by astronomers to convert radiation (light, radio waves, etc) 
into more-readily measurable quantities such as electric charge or current. Detectors 
invariably add noise to the signal. A good detector is one that responds to radiation with 
high efficiency and adds very little noise. As we shall see, there is a wide variety of types 
of detectors. Successful observations rely on selecting the appropriate detector for the 
type of measurement. This chapter begins with a general analysis of detector performance 
and characterization and then proceeds to a discussion of the main types of detectors in 
common use. 

2.1 Fundamentals 
We begin with a consideration of what a detector does and how it should be 
characterized. This requires some discussion of the fundamentals of the theory of 
measurement. 

2.1.1 Signals, detectors and noise 
A signal is a quantity or set of quantities containing information. It may take the form of 
a function of one or more variables, such as the flux of radio waves from a pulsar as a 
function of time, or the angular distribution of intensity of light arriving from a distant 
galaxy. Alternatively, it might be represented as a discrete set of one or more numbers, 
such as the number of photons received from a source within specified time intervals. 
 
Very generally, a detector is a device that converts information from one form to another. 
There is therefore an input signal and an output signal associated with every detector 
(Figure 2.1). As an example, consider a photocell, which is a device that produces an 
electrical response when light falls upon it. In this case the input signal is the light flux 
and the output signal is the voltage or current produced by the device. 
 

 
Figure 2.1. A detector converts a signal from one form to another. 
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Noise is a quantity whose value cannot be predicted in advance. This may result from 
either random or chaotic behavior. Invariably, signals contain some degree of noise, 
implying that they consist of a systematic component and a fluctuating noise component. 
The ratio of the systematic component to the noise component (usually the root-mean-
square value) is called the signal-to-noise ratio (s/n ratio). 

2.1.2 Characterization of noise 
Statistically, a fluctuating quantity x can be completely described by its frequency 
function  ( )f x  (also called the probability density function or probability distribution). 
The quantity ( )f x dx  gives the probability that x will be found in the range ( , )x x dx+ . 
Since x must have some value, the integral of the frequency function over the entire range 
of x must give unity, 

 ( ) 1f x dx
∞

−∞

=∫ . (2.1) 

 
Here we have assumed that the range of x is the set R of all real numbers, but of course 
other ranges (such as the set of positive real numbers) are also possible. 
 
If x takes only discreet values 1 2( , ,..., )nx x x , then its frequency function is discreet: if  is 
the probability that ix x= . The normalization condition becomes 
 

 
1

1
n

i
i

f
=

=∑ . (2.2) 

 
 
In what follows, we shall generally assume that x is continuous. To arrive at the discreet 
just make the substitutions ix x→ , ( ) if x dx f→  and replace the integral with a 
summation. 
 
The expectation value of  any function ( )g x  is defined by 
 

 ( ) ( ) ( )g x g x f x dx
∞

−∞

= ∫  (2.3) 

 
which clearly obeys the linearity conditions 
 

 
( ) ( ) ( ) ( )

( ) ( )

g x h x g x h x

ag x a g x

+ = +

=
 (2.4) 

 
where a is any constant. 
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A fluctuating quantity can also be described by its moments. The k-th moment of x is just 

kx . Of particular interest is the first and second moments which define the mean value 

( x ) and the variance of x, 
 

 22 2Var( ) ( ) .

x x

x x x x x

=

= − = −
 (2.5) 

 
The last equality follows from the linearity of the expectation value. 
 
The square root of the variance is called the standard deviation of x. It is just the root-
mean-square (RMS) value of x. 
 ( )1/ 2Var( )x xσ = . (2.6) 

2.1.3 The Gaussian distribution 
Many fluctuating quantities are well-represented by the Gaussian or Normal distribution 
 

 ( )2

2

1 1( ) exp
22

f x x x
σπσ

 = − − 
 

 (2.7) 

 
The Gaussian distribution is completely characterized by the constants x  and σ  which, 
as is easily confirmed, are equal to the mean value and standard deviation of x. 
 
It can be shown that if a fluctuating quantity results from the cumulative effect of a 
number of statistically-independent fluctuating quantities, its frequency function is well-
approximated by a Gaussian distribution. This is a consequence of the central limit 
theorem which states that the frequency function of the sum of a number of random 
variables converges to a Gaussian distribution in the limit as the number of random 
variables increases (more details, and a proof, can be found in many texts such as 
Matthews & Walker 1970, Methods of Mathematical Physics).  In practice the Gaussian 
distribution is a very good approximation even if the number of component variables is 
relatively small (of order 10) as long as their frequency functions are reasonably smooth. 

2.1.4 The Poisson distribution 
A useful discreet frequency function is the Poisson distribution 
 

 ( )( ) exp
!

n

n
zP z z
n

= −  (2.8) 
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where in x=  is a non-negative integer and z is a free parameter. 
 
It is not hard to show that, for the Poisson distribution, 
 
 Var( )n n z= = . (2.9) 
Therefore 

 n nσ =  (2.10) 
 
As an example of the use of this distribution, consider a random distribution of objects, 
galaxies on the sky, for example. (The distribution of galaxies is actually not completely 
random, but suppose for the sake of illustration that it is.) If the mean number of galaxies 
per square degree is z, then, in a randomly chosen area of one square degree, the 
probability of finding exactly n galaxies is ( )nP z . For example, the probability of finding 
no galaxies, when on average z galaxies are expected, is exp( )z− .  

2.1.5 Signal-to-noise ratio 
The signal-to-noise ratio is a measure of the quality, or information content, of a signal. 
For example, suppose we have a spectrum (a measure of the specific flux or intensity 
over a finite frequency or wavelength range) of a distant galaxy and see what appears to 
be an emission feature (see Figure 2.2). What is the probability that this feature is real (ie 
not due to noise)? If the amplitude of the feature is a and σ  is the RMS noise in the 
spectrum, then the signal-to-noise ratio is /s a σ= . We can determine the probability 

( )P s  of finding a “feature” of signal-to-noise ratio greater or equal to s, at that location, 
by integrating the frequency function of the noise from s to infinity. If the noise has a 
Gaussian distribution, we obtain, using (2.7), 
 

 21 1( ) exp( / 2) erfc
22 2s

sP s x dx
π

∞
 = − =  
 

∫  (2.11) 

 
( )P s , which is the probability that the feature is spurious, is listed in Table 2.1 for several 

different values of s. Normally, a signal-to-noise ratio of at least 3 is required before one 
can say with any confidence that a feature is not the result of a noise fluctuation. 
 

Table 2.1. Chance probability vs signal-to-noise ratio 
 

s ( )P s  
1 0.1587 
2 0.0228 
3 0.0013 
4 0.00003 
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Figure 2.2. Is the peak near the center of the spectrum real or just a noise fluctuation? The 
answer depends on the signal-to-noise ratio. 

2.1.6 Addition of noise 
We are often faced with the situation where the noise is the sum of the effects of two or 
more noise sources, for example z x y= + . The properties z can be determined by 
standard rules for the manipulation of probabilities. For example, probability of finding z 
in the interval ( , )z z dz+  is equal to the probability of finding x in the interval ( , )x x dx+  
multiplied by the probability of finding y in the interval ( , )z x z x dz− − + , integrated over 
all possible values of x. Thus, 

 ( ) ( ) ( )z x yf z f x f z x dx
∞

−∞

= −∫  (2.12) 

 
where the subscripts denote the frequency functions of the individual variables. From this 
we see that the frequency function of the sum of two random variables is just the 
convolution of the individual frequency functions. The extension to several variables 
should be evident – one convolves all of the frequency functions. 
 
Now consider the mean and variance of the sum of several independent fluctuations. 
From the linearity of the expectation value (2.4) we have 
 
 1 2 1 2... ...x x x x+ + = + +  (2.13) 
 
so the mean value of a sum is just the sum of the mean values. Apply this now to the 
variance. Using (2.4) and (2.5), 
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 (2.14) 

 
where the second last step follows because the variables are independent so the 
expectation values of all the cross terms are zero. Thus we see that when adding 
independent fluctuating quantities, the variances add. This result can be expressed in 
terms of the standard deviations, 
 
 2 2 2

... ...x y z x y zσ σ σ σ+ + + = + + +  (2.15) 
 
Standard deviations combined in this way are said to be added in quadrature. 

2.1.7 Functions of noise 
It is frequently necessary to determine the properties of some function of the noise, such 
as amplification, smoothing, etc. If x is a fluctuating quantity and y is some function such 
that ( )y y x=  and ( )y dy y x dx+ = + , then the probability of finding y in the interval 
( , )y y dy+  must equal the probability of finding x in the interval ( , )x x dx+ . Therefore, 

 
( ) ( )

( ) ( )

y x

y x

f y dy f x dx

dxf y f x
dy

=

=
 (2.16) 

 
which is the law of transformation of probability distributions. The absolute value signs 
are required because probabilities cannot be negative. 
 
In the special case of a linear function y ax b= + , it is easily shown from (2.4) and (2.5) 
that 

 
2Var( ) Var( ).

y ax b
y a x

= +
=

 (2.17)  

2.1.8 Detective quantum efficiency 
We are now in a position to discuss quantitatively the “quality” of a detector. Recall that 
a detector is a device which converts information from one form to another. The 
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information content of the signal is never increased by this, but it can be degraded if the 
detector adds noise in the process. A good detector is one that adds very little noise. To 
quantify this, we define the detective quantum efficiency (DQE, or just D) as the squared 
ratio of the output to input signal-to-noise ratios, 
 

 
2

( / )
( / )

out

in

s nD
s n

 
=  
 

. (2.18) 

 
The reason for the square will become evident soon. The DQE is the most fundamental 
measure of the quality of the detection process. It describes the amount by which the 
signal-to-noise ratio is degraded by the detector. Because the detector can only add noise, 
not remove it, the DQE is never greater than unity (and in practice is always less), 
 
 1D ≤ . (2.19) 

2.1.9 Quantum Efficiency 
For detectors which respond to individual quanta of radiation, ie. photons, one defines the 
quantum efficiency (Q) to be the probability that a photon incident on the detector will 
contribute to the output signal. In other words, Q is the fraction of incident photons that 
are actually detected. (Not all photons are necessarily detected – they can be absorbed, 
scattered, reflected and not reach the sensitive area of the detector. Also, the charge 
carriers that they produce may not all reach the output.) 
 
Many detectors respond to incident photons by producing discreet charges, such as an 
electron or hole in a semiconductor. If the photon energy is sufficiently high, more than 
one charge carrier may be produced. The average number of charge carriers produced per 
photon is called the quantum yield (η ) and the product of the quantum yield and 
quantum efficiency is called the responsive quantum efficiency (RQE). 
 
 RQE Qη= . (2.20) 

2.2 Sources of Noise 
The information content of a signal is ultimately limited by noise. It is therefore 
important to examine the primary sources and properties of noise that affects 
astrophysical measurements. 

2.2.1 Photon noise 
Because electromagnetic radiation comes in the form of discreet quanta, photons, the flux 
and intensity of this radiation is quantized. To a good approximation, the arrival times of 
photons are random. (Under certain conditions, discussed more fully later, photons 
having nearly the same wave vectors and times are correlated because photons are 
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indistinguishable particles.)  They are therefore governed by Poisson statistics. For 
example, suppose that light from a star is measured, using a perfect detector, and the 
number of photons detected in a specified time interval is recorded. This observation is 
repeated many times and the results are compared. The number of photons received each 
time will vary. This variation is an unpredictable fluctuating quantity and is therefore a 
source of noise. If x is the average number of photons received, then the probability that 
exactly n photons will be received in any individual measurement is ( )nP x , given by 
(2.8). The rms variation in the number of photons received in an individual measurement 

is given by (2.10), n nσ = . Now, if we have only a single measurement, we don’t know 

the mean value n  of very many measurements, but we can estimate it. The best estimate 
that we have for n  is n, the number of photons that were detected in our single 
measurement. Therefore, our best estimate of the RMS uncertainty in a single 
measurement of n photons is 
 n nσ = . (2.21) 

2.2.2 Thermal noise 
Associated with every electrical resistance is a fluctuating electrical signal that arises 
from the thermal motions of electrons in the resistive material. This is referred to as 
Johnson noise or thermal noise. If the resistor is coupled to an external load, power will 
be transferred from the resistor to that load. It is easy to show that the power transferred 
will be maximum when the impedence (resistance in this case) of the load equals that of 
the resistor. For simplicity, assume that the load has zero temperature and therefore 
generates no noise itself. Figure 2.3 shows the equivalent circuit for this arrangement. 
The power spectral density (electrical power at frequency ν , per unit frequency interval) 
transferred to the load can be shown to be 
 
 ( , )P kTp Tν ν=  (2.22) 
where 

 ( , )
exp( ) 1

h kTp T
h kT
νν
ν

=
−

 (2.23) 

and k is Boltzmann’s constant. This result is called Nyquist’s theorem. The function 
( , )p Tν  is very close to unity at low frequencies but approaches zero exponentially when 

the energy hν  of a fluctuation exceeds the typical thermal energy kT. Thus, below this 
cutoff the power spectral density of the fluctuations is practically independent of 
frequency, a characteristic that is referred to as white noise. In practice, we are only 
sensitive to fluctuations within a certain frequency range. If ( )W ν  represents the relative 
response of the measuring system at frequency ν  (a function whose maximum possible 
value is unity), then 
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0

( )P P W d

kTB

ν ν ν
∞

=

=

∫  (2.24) 

 
where the bandwidth B is defined by 
 

 
0

( )B W dν ν
∞

= ∫  (2.25) 

 
Now, the mean power can also be written as 2 / 4P V R= , where 2V  is the mean 
square voltage generated by the resistor. The factor of 4 occurs because only half of the 
voltage appears across the load. This gives the familiar result 
 
 2 4V kTRB= . (2.26) 
 
A common source of noise in electronic amplifiers is the Johnson noise associated with 
their input resistance. 
 

 
Figure 2.3 Equivalent circuit of a resistor connected to a load. The circle indicates the 
fluctuating voltage generated by thermal motion of electrons in the resistor. 

2.2.3 KTC noise 
A closely related form of thermal noise occurs in the measurement of electrical charge. 
This charge, such as that produced by the action of light on a semiconductor, is stored in 
some form of capacitor. This produces a voltage which is amplified and measured, as in 
Figure 2.4.  The voltage produced by a charge Q stored on a capacitance C is  
 
 /V Q C=  (2.27) 
 
Johnson noise in the amplifier will produce an RMS voltage fluctuation 
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 2V kTRBσ = , (2.28) 
 
according to (2.26). Now the capacitor has a reactance / 2i Cπν−  that decreases with 
increasing frequency and will attenuate fluctuations above the characteristic frequency 
(1/ RC ) of the RC circuit. Integration of the power response function gives the effective 
bandwidth 
 

 
( ) 12

0

(2 ) 1

1
4

B RC d

RC

πν ν
∞

−
= +

=

∫
. (2.29) 

 
Combining (2.27), (2.28) and (2.29) gives the RMS error in the measurement of the 
charge 

 Q VC

kTC

σ σ=

=
 (2.30) 

 
which is independent of the value of the resistance! This noise is called KTC noise, for 
obvious reasons. 
 

 
Figure 2.4 Equivalent circuit for the measurement of charge stored on a capacitor. 
Johnson noise generated in the input resistance of the amplifier causes charge fluctuations 
on the capacitor with RMS value of kTC . 

2.2.4 1/f noise 
Electronic systems are affected by a type of noise whose power spectral density has the 
form 
 1Pν ν −∝  (2.31) 
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This noise is called 1/f or flicker noise. It predominates at low frequencies and its origin 
is unknown. Normally, some form of low-frequency cutoff filter is required to reduce this 
noise. 

2.2.5 Shot noise 
When a signal is represented by an electric current, the noise arises because of the 
discrete nature of the charge carriers. The arrival times of electrons moving in a circuit 
are random and therefore governed by Poisson statistics. For a steady current I, the 
average number of electrons passing a given point in time t is  
 
 /N It e=  (2.32) 
 
where e is the charge of the electron. The RMS fluctuation in the current will therefore be 
 

 

I N
e
t
e It
t e

eIB

σ σ=

=

=

 (2.33) 

 
where we have used (2.10) and taken 1/B t= . 

2.2.6 Recombination noise 
In semiconductors, the signal is represented by charge carriers (electrons or holes) which 
move in the conduction band. Occasionally, some of these recombine with atoms in the 
semiconductor lattice. This random process can sometimes be a significant source of 
noise in such devices. 

2.3 Detectors 
There are two main classes of detectors: incoherent detectors respond only to the energy 
of the incident radiation; coherent detectors also provide information about the phase of 
the radiation. Coherent detectors are available for low-frequency radiation but not for 
high-frequencies. The boundary between coherent and incoherent detection presently 
occurs at a wavelength of approximately 1 mm. At higher frequencies, a wavelength of 
about 10 um or less, individual photons have sufficient energy to create a measurable 
response in the detector, either by ejection of excited electrons (the photoelectric effect), 
or by ionization or deposition of energy, as in a scintillator. As coherent detection will be 
discussed in Section 2.4, the remainder of this section will discuss only incoherent 
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detectors. Even here, the discussion will be limited to those types of detectors most 
commonly used by astronomers. 

2.3.1 Bolometers, pyroelectric detectors and 
thermocouples 

A bolometer is a device that responds to the total power that it absorbs from the radiation 
field. Typically, the absorbed radiation causes a change in temperature of the device 
which results in a change of electrical resistance. Bolometers are frequently used at 
infrared and sub-millimetre wavelengths, from about 1 mm to 10 um. Figure 2.5 and 
Figure 2.6 show the bolometer feedhorn array, and an individual germanium bolometer of 
the SCUBA detector used with the James Clerk Maxwell Telescope (JCMT). 
 

 
Figure 2.5. The feedhorn array of the SCUBA imaging detector. Each horn channels 
submillimetre radiation to a germanium bolometer. 
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Figure 2.6. Exploded view of a germanium bolometer of the SCUBA array. 

 
Figure 2.7 shows a simple circuit diagram illustrating the operation of a bolometer. The 
variation in electrical resistance causes a change in current flow in the circuit, which is 
then amplified and measured. In order to achieve high sensitivity, one needs a material in 
which a small change in temperature produces a relatively large change in electrical 
resistance. Semiconductor materials, such as germanium, are often used. In a 
semiconductor, most electrons are bound to atoms in the lattice and are not able to carry 
an electric current. If sufficient energy is provided, an electron can be freed from the 
lattice and move about the material. In terms of energy, such electrons occupy a 
conduction band. The vacancy left by the electron leaves the atom with a net positive 
charge. This vacancy can be filled by an electron from a neighboring atom, and thereby 
propagate through the crystal. It therefore represents a freely-moving positive charge 
called a hole. The minimum energy gE  required to promote an electron from a bound 
state to the conduction band is called the bandgap energy. In thermal equilibrium at 
temperature T, the number of thermally excited electrons in the conduction band is 
proportional to 3 exp( / )g BT E k T− . Since the conductivity G of the material is 
proportional to the number of free charge carriers, we have 
 
 3 exp( / )g BG T E k T∝ −  (2.34) 
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The resistance of the device is inversely proportional to the conductivity. It is this 
exponential dependence of the conductivity on temperature that gives semiconductor 
bolometers their high sensitivity. 
 
The primary source of noise in a bolometer is the thermal noise associated with its 
resistance. For this reason, bolometers are commonly cooled to about 4K, using liquid 
helium, to reduce this noise. 

 
Figure 2.7. Operation of a bolometer. Light falling on the bolometer, illustrated by an 
ellipse, heats the device which results in a change of conductivity. This changes the 
current flow in the circuit causing a change in the output voltage of the amplifier. 

 
Two related devices, used primarily for the detection of infrared radiation, are pyroelectic 
detectors and thermocouples. Pyroelectric material has a temperature-dependent 
electrical polarization. When placed between the plates of a capacitor, variations in the 
polarization create an electrical signal, proportional to the energy absorbed from the 
radiation field. These devices are operated with a chopping mechanism that interrupts the 
radiation coming from the source in order to eliminate slow variations (ie less than the 
chopping frequency, which is typically about 10 Hz) in the polarization and drift in the 
electronic circuit. 
 
A thermocouple is a junction between dissimilar metals. The differing contact potential 
(the energy required to free an electron from the metal, divided by the charge of the 
electron) for the two metals results in a voltage that can drive an electrical current, a 
phenomena referred to as the Peltier effect. The amount of current flow depends on the 
thermal energy provided to the junction. Normally the circuit includes two junctions in 
series, with opposite polarity, so that the net current is proportional to the temperature 
difference between the two junctions. One junction is held at a reference temperature, 
using a liquid helium bath, and the other is exposed to the incident radiation. Like a 
bolometer, the thermocouple responds to the total absorbed energy. However, 
thermocouples have not achieved a comparable level of sensitivity. 
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It is interesting to note that the Peltier effect also works in reverse. If current is supplied 
to the junction, the temperature will increase or decrease, depending on the direction of 
current. This effect is exploited by thermoelectric coolers that are sometimes used to cool 
detectors. 

2.3.2 Photomultipliers 
A photomultiplier is a vacuum-tube device containing a photocathode, anode, and 
several intermediate structures called dynodes, as shown in 

Figure 2.8. Electrical potentials applied to these create a strong electric field which 
accelerates electrons in the direction of the anode. Light incident on the photocathode 
will cause the ejection of electrons by the photoelectric effect, provided that the photons 
have energy at least as great as that required to free an electron from the photocathode 
material. This energy, known as the work function depends on the composition of the 
photocathode. Once ejected, an electron is accelerated by the electric field towards the 
first dynode. It strikes the dynode with sufficient energy to cause the ejection of several 
secondary electrons. These in turn are accelerated toward the second dynode and the 
process continues. In this manner, a single photoelectron results in a shower of as many 
as a million electrons reaching the anode. Because of this electron multiplication, 
photomultipliers produce a measurable signal even for a single photon (provided that it 
produces a photoelectron). They are frequently used in photon counting applications. 

Photomultipliers come in many shapes and sizes. Some examples are shown in Figure 
2.9. The response of a photomultiplier depends on the wavelength of the incident light 
and the composition and thickness of the photocathode. Examples of quantum-efficiency 
curves for common photocathode materials is shown in Figure 2.10. In astronomy, 
photomultipliers were used to conduct photoelectric photometry, which superceded less-
accurate photographic photometry for most observations. While photomultipliers can 
provide high accuracy and dynamic range, they have been almost entirely replaced by 
modern CCD detectors for optical astronomy. CCDs have typically four times higher 
peak quantum efficiency than photomultipliers, and also have the advantage of being 
imaging detectors. 

2.3.3 Image intensifiers 
Photomultipliers can provide a measure of the total flux, but not the intensity since they 
provide no information about the location of a photon which strikes the photocathode or 
the direction from which it came. They are therefore rarely used for imaging applications. 
(The exception is large arrays of photomultipliers where each corresponds to one pixel in 
the image, such as the Kameokande detector.) However, there are a number of 
photoelectric devices that do preserve image information. 
 
A simple electrostatic image intensifier (Figure 2.11) uses an electron “lens” to direct 
photoelectrons to a phosphor screen according to their position, much like a pinhole 
camera. The electrons strike the phosphor with enough energy to cause the emission of 
several hundred photons. For proper focusing, the photocathode surface must be curved, 
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so a fiber-optic plate is used to channel light from the (flat) input image to the curved 
photocathode. It is comprised of a large number of parallel optical fibers which conduct 
the light with little loss of resolution. Two or three such devices and be connected 
together to yield a higher gain. However, they suffer from strong field distortion and 
vignetting (discussed in Section 3) and do not produce a high-quality image. 
 

 
 

Figure 2.8. Internal components of a typical photomultiplier tube. 
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Figure 2.9. Examples of different  photomultiplier types manufactured by Hammamatsu 
Corp. The large tube in the picture on the right is one of the large photomultipliers used 
to detect Cerenkov photons in the Kamiokande neutrino detector. 
 

 
Figure 2.10. Quantum efficiency curves (right hand scale) for common photocathodes. 
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Figure 2.11. Cross section of a single-stage electrostatic image intensifier. The simplest 
such devices produce an inverted image that is about 10 times brighter than the incident 
image. The intensifier shown in the figure also contains a microchannel plate, just before 
the phosphor screen, which provides additional gain. 

 
The microchannel intensifier provides much better performance in a compact package 
(Figure 2.12). In this device, a microchannel plate (MCP) is located in close proximity to 
the photocathode. This plate consists of a semiconductor material permeated by a large 
number of channels, closely packed in a hexagonal array (Figure 2.13). A large potential 
is applied across the plate and photoelectrons that enter a channel and strike the side eject 
secondary electrons, producing a cascade of electrons in a similar manner to a 
photomultiplier (Figure 2.14). These electrons strike a phosphor, creating a bright spot. 
Because the electron cascade is confined to the channel in which the photoelectron 
entered, the positional information is preserved. Figure 2.15 shows a magnified view of a 
microchannel plate. 
 
As the figures suggest, electron cascades can be initiated directly by other high-energy 
particles such as X-ray photons, without the need for a photocathode. Because of this, 
MCPs are effective detectors of X-rays. It is also possible to eliminate the phosphor 
screen and detect the electron cascade directly. Devices such as the MAMA detector 
employ a grid of electrodes that collect the electrons and, with appropriate electronics, 
can record the position of each electron cascade. 
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Figure 2.12 Cross section of a microchannel intensifier. Electrons from the photocathode 
create electron showers in a microchannel plate which then strike a phosphor. The optical 
gain of such devices rangers from 103 to 106. 

 
Figure 2.13. Schematic view of a microchannel plate. Electrons, or high-energy photons, 
striking the front face eject electrons that are amplified by secondary emission in the 
channels. 
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Figure 2.14. Illustration of the electron cascade within a single channel of a microchannel 
plate. Secondary electrons are produced in collisions with the channel walls. 

2.3.4 Photodiodes 
The photodiode is perhaps the simplest solid-state photoelectric detector. 
Semiconductors, such as crystalline silicon, contain a conduction band which normally 
contains only a few thermally excited electrons. If a small quantity of phosphorus is 
added to the crystal, a process called doping, phosphorus atoms replace some of the 
silicon atoms in the lattice. Since phosphorus has a valence of +5, one greater than 
silicon, it has an extra electron in its outer shell. This electron is weakly bound, requiring 
only 0.04 eV of energy to enter the conduction band. At normal temperatures almost of 
these electrons are thermally excited, providing free negative charge carriers. Silicon 
doped with phosphorus is called n-type silicon because of these negative charge carriers. 
The phosphorus atom, on the other hand, now contains a net positive charge that is fixed 
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in the lattice.  This charge offsets the negative charge in the conduction band so that the 
material is electrically neutral overall.  
 
 

 
 

Figure 2.15. Micrograph of the surface of a microchannel plate. The individual channels 
are seen as light circles that have a diameter of about 12 um. 

 
If boron atoms are used instead of phosphorus, the opposite effect occurs. Boron has a 
valence of +3, so it provides one less electron than does silicon. An electron from a 
neighboring atom can be captured here, so the deficit produces a hole, ie. a free positive 
charge carrier. Boron-doped silicon is therefore said to be p-type. The captured electron 
provides a negative charge that is not balanced by the nucleus, so each boron atom 
effectively contributes a fixed negative charge. 
 
If p-type and n-type silicon (or other semiconductor) are brought together in contact, they 
form a pn junction. In the absence of any external electrical potential, the charge carriers 
move about the semiconductor by thermal diffusion. Conduction-band electrons in the n-
type material and holes in the p-type material diffuse across the junction and recombine. 
Because of this there is a region surrounding the junction that is depleted of free charge 
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carriers (electrons and holes). It is naturally called the depletion region.  Because there 
are no, or very few, charge carriers in this region, the fixed charges attached to the dopant 
atoms (phosphorus and boron) are no longer neutralized and the region is electrically 
charged (see Figure 2.16), with a positive charge in the n-type region and a negative 
charge in the p-type region. This charge creates an electric field in the depletion region 
that opposes the diffusion of charge carriers, thereby creating an equilibrium that sets the 
size of the depletion region. Because of the electric field, the electrical potential on the p 
side of the depletion region is higher than that on the n side. This potential difference is 
called the junction potential.  

 
Figure 2.16. A pn junction. Circled charges represent free charge carriers (electrons and 
holes). Un-circled plus and minus signs denote fixed charges associated with dopant 
atoms. In the depletion region the free carriers have recombined. The remaining fixed 
charges are now un-neutralized and create an electric field. This gives rise to a potential 
difference across the junction. 

 
If an external voltage is applied to the junction, by connecting wires to the p and n sides 
to a battery for example, the potential difference across the junction can be increased or 
decreased. If the polarity is such that a positive voltage is applied to the p-type material, 
the junction potential is reduced, or even reversed and current flow across the junction 
increases. The junction is said to be forward-biased. If the polarity is reversed, the 
junction potential increases and current flow across the junction decreases. The junction 
is said to be reverse-biased. This is the principle of the semiconductor diode, which 
allows current to pass in one direction (forward biased) but not the other (reverse biased). 
 
A photodiode is made by reverse biasing a pn junction. In this situation, the current flow 
is small, being comprised mainly of thermally-excited electrons in the depletion region. If 
light is allowed to fall on the depletion region, and the photons have sufficient energy, 
electrons can be photoexcited into the conduction band. These electrons are swept across 
the junction by the electric field and constitute a current which is proportional to the 
number of photons per second entering the depletion region. For silicon, the bandgap 
energy is 1.1 eV, which corresponds to a wavelength of about 1 um. A silicon photodiode 
can therefore detect optical photons, to a long-wavelength cutoff of about 1 um. In the 
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near-infrared, InSb can be used, as this material has a smaller bandgap energy 
corresponding to a wavelength cutoff of about 5 um. Photodiodes generally have very 
high quantum efficiencies, typically 90% or more in the most sensitive wavelength 
region. 

2.3.5 Photodiode detectors 
In astronomy, the light that we need to detect is usually very faint and would not produce 
a significant current. Rather, we are interested in measuring the total charge accumulated 
during an exposure, since this is directly related to the total number of photons received. 
In order to do this, the photodiode is connected in a manner shown schematically in 
Figure 2.17. When an external voltage is applied (reverse bias), current flows 
momentarily into the diode. This charge combines with electrons or holes, increasing the 
size of the depletion region. There is therefore an increase of fixed charge, equal to the 
total charge that entered and recombined, and the junction potential increases to equal the 
applied voltage. Thus, the diode acts as a capacitor, which stores charge applied to it with 
a resulting increase in voltage /V q C∆ = ∆ . To make use of this effect to measure light, 
the photodiode is first charged by applying a potential V by momentarily closing a switch 
(usually an electronic one). The switch is then opened so that no charge can enter or leave 
the diode. The diode is now exposed to light. Photons illuminating the semiconductor 
produce free electrons and holes. These diffuse to the depletion region where they are 
swept across the junction to the by the electric field, electrons to the n side and holes to 
the p side. The size of the depletion region thereby shrinks, and the junction potential is 
reduced in proportion to the charge generated by the photons. At the end of the exposure, 
the charge is measured by closing the switch and measuring the current that flows to 
recharge the diode. The amount of charge that must flow to bring the junction potential 
back to V is exactly that which was produced by the photons. In practice, there is also 
charge due to thermally excited electrons. This charge depends on temperature and 
exposure time, but not light intensity. The resulting current is called dark current. The 
limiting noise in a photodiode is the KTC noise associated with the junction capacitance. 
This is typically on the order of a few electrons RMS. 
 
One-dimensional arrays of photodiodes can be fabricated on a single crystal, by the 
lithographic process used to make integrated circuits. Switches, made from metal-oxide 
semiconductor field effect transistors (MOSFETs), link all the diodes to a common 
output amplifier. The arrangement is shown in Figure 2.18. The gates of the MOSFETs 
are connected to a shift register. The diodes can be set and reset sequentially by loading a 
logical “1” into the shift register, then applying a series of pulses to the clock input. Each 
pulse causes the 1 to move ahead one position in the shift register, which causes the 
active output to move in sequence, closing and opening one switch after another. In this 
manner, an array of N photodiodes can be sequentially read out by a sequence of N 
pulses. The noise for a photodiode array is greater than that of an individual photodiode 
because of the large number of MOSFET switches all connected to the ouput line. Each 
contributes a small capacitance that adds to the total. The output capacitance is 
proportional to N and the KTC noise is therefore proportional to 1/ 2N . 
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Figure 2.17. Simple photodiode detector. Closing the switch charges the reverse-biased 
diode to potential V. The switch is then opened and the diode is exposed to light. 
Photoelectrons neutralize some of the charge on the diode, reducing the potential. At the 
end of the exposure, the switch is again closed and the current that flows to recharge the 
diode is measured. 

Two-dimensional photodiode arrays can be made by replicating one-dimensional arrays, 
which then form the rows of an M N×  array. The outputs are all connected to a common 
amplifier. These have not found much use in astronomy because of their relatively small 
number of pixels, and high read noise. 
 
One-dimensional, and also 2 N× , photodiode arrays have been used effectively by 
astronomers for spectroscopic applications. Their chief advantages are high quantum 
efficiency, dynamic range, and linearity. They have now largely been superseded by 
large-format CCDs, which have lower noise. 
 

 
Figure 2.18. Architecture of a 1-dimensional photodiode array.  A logical 1, loaded into 
the shift register, is shifted, activating one output after another, by pulses applied to the 
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clock input. The FET switch connected to the active output closes, allowing one pn diode 
after another to be reset and the accumulated charge measured.  

2.3.6 CCDs 
Charge-coupled detectors (CCDs) have revolutionized optical astronomy, and have 
proven to be very effective also for X-ray astronomy. A CCD is an array of light sensitive 
sites connected in such a way that charge can be transferred from one site to another. A 
simple 1-d CCD is illustrated in Figure 2.19. It consists of a substrate of p-type silicon 
upon which is built an insulated gate (electrode) structure. The simplest arrangement is a 
3-phase system in which there are three gates per pixel, each connected to the 
corresponding gate of all the other pixels. When a positive potential is applied to one set 
of gates, phase 1 say, a potential well (a region of low potential energy) is created around 
each gate in the set, ie one per pixel. The positive potential on the gate repels the free 
charge carriers (holes) in the silicon, creating a depletion region below the gate. 
Electrons, either photoexcited or thermally excited, entering one of these regions are 
attracted toward the gate but cannot reach it because of the insulating layer. When 
exposed to light, each pixel accumulates a number of electrons proportional to the light 
intensity at that point. The unique aspect of the CCD is the manner in which these 
charges are measured. 
 
 

 
 

Figure 2.19 Cross section of a 1-dimensional CCD. The input diffusion is normally not 
used for astronomical applications. The sense diffusion is connected to the output 
amplifier. 
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If the potential on phase 1 is now reduced to zero, while simultaneously, the potential on 
phase 2 is increased, the potential well moves to the region below the phase 2 gate, 
carrying with it the electrons it contains. This happens for all the pixels simultaneously. 
Thus, the electrons have all been moved slightly towards the end of the array. The 
process repeats now with the potential on phase 2 being reduced to zero while a positive 
potential is applied to phase 3. This moves the charges further, to the region below the 
phase 3 gate. Now the potential is switched again, this time from phase 3 back to phase 1. 
Again the electrons move, but now those in the first pixel enter the second, those in the 
second enter the third, and so on. The charge on the last pixel is transferred to an 
amplifier where it is measured. In this manner, the charges on an array of N pixels will all 
have been transferred sequentially to the output amplifier after N cycles of each of the 
three phases.  
 
The key advantage of a CCD, compared to the diode array, is that although all of the 
charges are ultimately transferred to the amplifier and measured, the amplifier is 
connected only to a single pixel, the last one in the array. The capacitance is therefore 
low, and is independent of the number of pixels. As a result, the KTC noise associated 
with the measurement is also low, and does not increase with larger array sizes. 
 
Two-dimensional CCDs (eg Figure 2.20) are made by arranging M one-dimensional 
arrays in the form of columns, as illustrated in Figure 2.21. Their gates are all connected 
in parallel, so that a cycle of these parallel gates moves the charges in all columns 
downwards together. The charges at the bottom of each column are transferred to a 
horizontal CCD, called the serial or horizontal register, which has its own set of gates, 
called the serial gates. To read out the array, the parallel gates are cycled once to move 
the bottom row of charge into the serial register. The serial gates are then cycled M times, 
to move the M charges in the serial register to the amplifier where they are measured. 
The parallel gates are then cycled again to load the next row of charges into the serial 
register and the process is repeated until all the charges have been read out.  
 

 
Figure 2.20 A commercial CCD array. 
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Figure 2.21 Two-dimensional CCD read out geometry.  

 
For CCDs to work, the efficiency with which the electrons are transferred from pixel to 
pixel must be very high. In a 2048 2048× pixel CCD, the charge at the top of the first 
column must undergo 4096 transfers to reach the output amplifier. Even a small loss of 
charge during each shift cannot be tolerated as it would be compounded over and over. 
The charge transfer efficiency of modern CCDs is very good, typically 99.999% or better. 
Most CCDs are front illuminated, which means that the light must pass through the 
overlying gate structure in order to reach the silicon below. The gates are made from a 
semitransparent conductive material (polysilicon), but inevitably some photons are 
absorbed or reflected in these layers. Because of this, the peak quantum efficiency of 
front illuminated devices rarely exceeds 40%. 
 
This problem can be overcome by reversing the CCD and allowing light to enter from the 
back side (ie the silicon itself). For this to work, the silicon has to be thinned to a 
thickness of some tens of microns otherwise the photons are absorbed too far from the 
gates to be efficiently collected. Thinning is a difficult and delicate process that 
sometimes results in the destruction of the device. These back-illuminated CCDs often 
have peak quantum efficiencies over 80%, but are much more expensive and difficult to 
obtain than are front-illuminated devices. Figure 2.22 shows quantum efficiency curves 
for several front and back-illuminated CCDs. 
 
CCDs can be used to detect energetic particles or photons such as X-rays. These particles 
deposit energy in the silicon creating multiple electrons. The number of electrons created 
by a single particle is proportional to the energy of the particle. If the flux of particles is 
not too high, they can be detected individually in the CCD image. In this manner one 
obtains not only an image in X-rays of the source, but also a measure of its energy 
spectrum. 
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Figure 2.22 Comparative quantum efficiencies of typical front and back-illuminated 
CCDs. 

 
Cosmic rays are a problematic source of background in CCDs. Each cosmic ray excites 
many electrons, leaving a visible track or spot in the image. The problem is less severe in 
back-illuminated CCDs as these are thinner and therefore have a lower cross section for 
cosmic ray absorption. Also, the cosmic ray images are smaller and can be more easily 
distinguished from stars. For observations at faint light levels, the cosmic ray background 
often is the main factor limiting the exposure time that can be used. 
 
Another problem affecting CCDs is fringing. Light is subject to optical interference from 
multiple reflections in the gate layers and the silicon itself, which produces optical fringes 
in the image. In imaging observations these usually arise from light from the night sky 
that has several strong emission lines. Fringing is most serious in thinned CCDs used for 
spectroscopy, where it can result in a modulation of the intensity of the image by as much 
as 30%. 
 
Despite their problems, CCDs are far more sensitive than most alternative detectors for 
optical radiation. They can also be made in very large formats ( 4096 4096×  and even 
larger), or assembled to form mosaics (Figure 2.23). The largest mosaic CCD cameras 
today have over a billion pixels! They are currently the dominant detector type for optical 
astronomy. 
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Figure 2.23 The Big Throughput Camera (BTC) – a mosaic of four 2048 2048×  pixel 
CCDs. The CCDs are housed in a vacuum dewar and cooled with liquid-nitrogen to 
approximately 170 K. 

2.3.7 Active-pixel sensors 
Although CCDs have proven to be very effective detectors for optical and X-ray 
astronomy, they have certain limitations. At low temperatures charge transfer efficiency 
decreases because the electrons have less thermal energy and therefore less mobility. At 
temperatures below about 100 K they effectively stop working. This makes CCDs 
unsuitable for very low-temperature environments such as the Next Generation Space 
Telescope (NGST) which will operate at an ambient temperature of only 30 K. 
 
Active pixel sensors avoid the problem of charge transfer efficiency by using multiplexed 
addressing. Unlike CCDs, active-pixel sensors are diode arrays. They differ from those 
already discussed in that every pixel has its own amplifier. Each amplifier sees only the 
capacitance of a single diode so the KTC noise is low. The amplified signals are then 
multiplexed to a single output, much as in the original diode array. Because the 
multiplexed signal has already been amplified, at each pixel, the noise contributed by the 
multiplexer and final amplifier is negligible. For silicon, the photodiodes, amplifiers and 
multiplexer can be made on a single integrated circuit. Each pixel then contains a 
photodiode, amplifier, and multiplexer switches and lines. Because of this, the active area 
(the region sensitive to light) is smaller because of the space occupied by the amplifier. 
These devices therefore have lower quantum efficiency, typically less than 50%.  
Because complimentary MOSFET technology is used for the amplifiers and switches, 
these devices are also called CMOS imagers. Current devices are intended primarily for 
the television/video market and contain fewer than 106 pixels. 
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2.3.8 Hybrid arrays 
Another important limitation is wavelength sensitivity. Large-format astronomical CCDs 
and active pixel sensors have been made only from silicon and are therefore unresponsive 
to wavelengths greater than approximately 1 um. A different kind of detector is needed 
for infrared observations. Hybrid arrays combine a silicon multiplexer and amplifier array 
with an array of photodiodes that can be made from a different material. They are similar 
in architecture to active pixel sensors, but eliminate problem of low quantum efficiency 
by locating the amplifier and multiplexer circuitry underneath the photodiode, so the 
latter can occupy all of the pixel area. This is done by combining two integrated circuits 
(ICs), made on separate wafers. (A wafer is a slice of crystalline silicon on which is 
manufactured several integrated circuits.) One IC, called the read-out integrated circuit 
(ROIC), contains the multiplexer and the amplifiers for each pixel. The other contains the 
photodiodes. In order to connect the two electrically, a small bead of indium, called a 
bump bond, is attached to each photodiode (the other side of the photodiode junctions are 
all connected together and connected to one or more bump bonds at the side of the array. 
The diode array is then flipped over, aligned, and glued to the ROIC. The indium bumps 
contact pads on the ROIC, located at each pixel, and at the edge of the array. Heat and 
pressure are applied to ensure a good electrical connection. 
 
Not only do hybrid arrays provide the best of both worlds – high quantum efficiency and 
low noise – but they also allow diode materials that differ from the silicon used to make 
the ROIC. Indium antimonide (InSb) photodiodes can be used to provide infrared 
sensitivity, to a cutoff wavelength of about 5 um. InSb hybrid arrays of 256 256× pixels 
are used for the infrared imagers on the Space Infrared Telescope Facility (SIRTF). 
Larger arrays are under development. Mercury cadmium telluride (HgCdTe) hybrid 
arrays have been fabricated in formats as large as 2048 2048×  pixels. The band-gap 
energy of these devices depends on the relative concentrations of the component 
materials and can be chosen to give wavelength cutoffs in the range 2.5 – 10 um. As 
always, there are compromises to be made in this choice. Longer wavelength cutoffs 
imply smaller band-gap energies. This results in greater dark current as there are then 
more thermally excited electrons reaching the conduction band. At wavelengths beyond 
about 2.2 um, thermal black-body radiation from the instrument, telescope and 
atmosphere is very strong and becomes the dominant source of noise. While the detector 
itself can be cooled to a low temperature, this is not possible for the telescope and 
atmosphere. 
 
The read noise for current hybrid arrays is in the range 15-60 electrons RMS, which is 
higher than the noise that can be achieved with the best CCDs. However, unlike diode 
arrays or CCDs, the charge stored in the pixels of hybrid arrays can be measured non-
destructively. It is therefore possible to measure the charge on each pixel repeatedly and 
average the result to reduce the noise. Multiple reads are made before and again after 
integration and the difference of the mean values is used. This technique, (called Fowler 
sampling), reduces read noise and cancels drift. 
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2.4 Coherent Detection 
At radio frequencies, and increasingly at higher frequencies too, it is possible to detect 
radiation coherently. This means that the phase is preserved, at least for some stages of 
the process. The most common detector employed by radio astronomers is the 
heterodyne receiver.  

2.4.1 The heterodyne receiver 
 

 
 

Figure 2.24. Block diagram of a heterodyne receiver. The sketches show typical electrical 
signals and power spectral densities at intermediate points in the receiver.  
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The fundamental components of a heterodyne receiver are shown in Figure 2.24; an 
example of a heterodyne receiver, operating at sub-millimeter wavelengths, is shown in 
Figure 2.25. Electromagnetic radiation induces an electrical signal in an antenna which 
then enters the receiver. There it is amplified by a low-noise radio-frequency (RF) 
amplifier. This amplifier passes frequencies in a range RFν∆  centered at frequency RFν . 
This frequency is generally too high and the bandwidth RFν∆  too large to allow a direct 
measurement of the signal. Normally we are interested in measuring the power as a 
function of frequency, or over a set of narrow frequency bands (to select particular 
emission lines). So, the signal must be coherently reduced in frequency.  
 
This is done by combining the RF signal with a sinusoidal signal produced by a local 
oscillator (LO). The LO signal is spectrally pure (monochromatic) with frequency LOν . 
The RF and LO signals are fed to a nonlinear device called a mixer which produces a 
signal proportional to the product of these two. Since 
 

 { }1cos(2 )cos(2 ) cos[2 ( ) ] cos[2 ( ) ]
2LO LO LOt t t tπν πν π ν ν π ν ν= − + +  (2.35) 

 
The resulting signal contains two frequency bands. One is centered at a frequency 

IF RF LOν ν ν= −  called the intermediate frequency (IF). The IF is normally much smaller 
than the RF, so the IF signal can be easily and effectively amplified and measured with 
conventional electronic components. This is done by the narrowly-tuned high-gain IF 
amplifier. The range of frequencies IFν∆  passed by the IF amplifier is normally much 
smaller than that of the RF amplifier. It is the IF amplifier that determines the bandwidth 
of the receiver IFB ν= ∆ . 
 
The second frequency band, centered at RF LOν ν+  is a much higher frequency (called the 
image frequency) and is blocked by the IF amplifier, falling outside its pass-band.   
 
The signal from the IF amplifier is then sent to a nonlinear device (called a detector – not 
to be confused with our more-general use of the term) which produces an output signal 
that is proportional to the square of the input signal. Rather than oscillating about zero, 
the signal coming from the detector has no negative values. Its average RMS value is 
proportional to the square of the flux F Bν  being received by the antenna (integrated over 
a frequency band of width IFB ν= ∆  centered at frequency RFν ). 
 
One can show that when one squares a random signal, the power contained in the 
constant (DC) component and fluctuating (AC) component of the spectrum are equal.  
 
In order to remove the rapid IF oscillations and to reduce noise, the signal from the 
detector is passed through an integrator.  This is effectively a low-pass filter that 
substantially attenuates fluctuations having frequencies greater than 1/τ , where τ  is the 
time constant of the integrator (for a simple RC low-pass filter, RCτ = ).  
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The result of the low pass filter is that the power in the fluctuating component is reduced. 
Because the effective bandwidth is reduced from / 2B  to 1/τ , the AC power is reduced 
by a factor  2 / Bτ .  
 

Figure 2.25. Photograph of a 183 GHz sub-millimeter heterodyne receiver. Radiation 
enters through the copper waveguide at the top center of the box and is mixed with the 
LO signal produced by a Gunn diode oscillator. The IF amplifier has two amplifier stages 
and three simultaneous IF bands (courtesy of Chalmers University of Technology). 

2.4.2 Receiver sensitivity 
It is common in radio astronomy to describe power or flux levels in terms of temperature. 
By Nyquist’s theorem, a resistor at temperature T  produces kT  WHz-1 of noise power, 
independent of its resistance. The system temperature is defined to be the temperature of 
a resistor which, if connected to the input of the receiver in place of the antenna, would 
produce the observed output power from the detector. The system temperature includes 
the effect of all sources of noise within the receiver as well as the power received by the 
antenna.  
 
When the antenna is pointed at a source of radio waves, the system temperature increases. 
The amount of increase is directly proportional to the power received from the source. 
The sensitivity of the receiver is ultimately limited by the fluctuating (AC) component of 
the signal coming out of the detector. The RMS value of this fluctuating power can 
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similarly be represented by a temperature T∆ , called the noise temperature. The ratio of 
the noise temperature to the system temperature is given by the square root (because the 
detector squares the signal) of the ratio of the AC and DC components coming from the 
integrator.  

 ( )( )

1/ 2
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AC power
DC power

DC power 2 /
DC power

2 /
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=

 (2.36) 

 

where we have used the fact that the AC and DC power are equal at the output of the 
detector, and that the effect of the integrator is to reduce the AC component by a factor 
2 / Bτ . 

 
From this we see that the faintest power level that can be detected (at the 1σ  level, ie. a 
signal-to-noise ratio of 1) is 

 2T T
Bτ

∆ =  (2.37) 

Where T  is the system temperature. We will use this formula again, in the next chapter, 
to derived an expression for the flux limit of a radio telescope.
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Exercises 
 
2.1 Prove Equation (2.9). 

2.2 A source is observed in the infrared as follows: First, a small area of sky is 
observed which contains the object of interest. Then, an equal area of sky, in 
nearly the same direction but not containing the object (or any other), is observed 
for an equal length of time. The signals from these two observations are then 
subtracted to determine the flux from the source alone. If n1 photons are detected 
in the first field and n2 in the second, estimate the signal-to-noise ratio that will be 
obtained for the flux. 

2.3 Suppose that during an observation, n photons are incident on a detector that has 
quantum efficiency Q. Suppose also that the detector adds noise which has an 
RMS value equal to the signal produced by r photons. Derive an expression for 
the DQE D of this observation, in terms of the above quantities. Show that in the 
limit when the detector noise can be neglected that D Q= . 

2.4 When photomultipliers are used to count photons, there is a brief period of time, 
immediately after a photon is detected, when the photomultiplier, amplifier, 
counter, etc, is unable to respond to any other photons. This is called the dead 
time of the system. Therefore, the measured count rate will be smaller than the 
true rate (the rate that would be measured if there was no dead time), because 
some photons will arrive during the dead time and will be missed. Because the 
dead time is usually a constant, independent of the count rate, a larger fraction of 
photons will be missed if the count rate is high. Derive an expression relating the 
observed count rate R , the true rate 0R , and the dead time dt  
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3 Telescopes 
In order to measure flux or intensity, one needs not only to detect the radiation, but also 
to control and measure the direction and solid angle. A collimator is a device that 
restricts and defines the solid angle of the radiation reaching the detector. For example, a 
lead plate with a hole drilled through it is an effective way of collimating certain kinds of 
radiation. More sophisticated instruments employ telescopes. A telescope generally has 
several functions: 

• It defines the direction and solid angle of the radiation reaching the detector 

• It increases the effective area of radiation that is intercepted and measured 

• It increases the solid angle of the radiation reaching the detector 
The last of these functions imply that the source has been magnified by the focusing 
effect of the telescope, because the rays coming from it now subtend a larger angle on the 
sky. 
 
Telescopes are used for radiation ranging all the way from the radio to X-ray regions of 
the spectra. There is a great variety of telescope types, design and construction for these 
different wavelength regions, but they share the same fundamental properties. Outside 
this region, there are fundamental differences in detection techniques. Low frequency 
radio waves are detected by antennas, which may be no more than wires strung on poles. 
Very high-energy radiation such as gamma rays, or cosmic ray particles, are more 
effectively detected by particle detectors that respond to ionization, or indirectly by 
detecting photons produced in the interaction of these particles with the Earth’s 
atmosphere. This chapter emphasizes telescopes used for optical and infrared radiation, 
however the fundamentals are the same also for radio and X-ray telescopes. 

3.1 Basics 
An astronomical telescope forms an image of a distant object by focusing parallel rays to 
a point, called the focus. An example of this is shown in Figure 3.1. In this case light is 
focused by a lens (called the objective lens). In a perfect telescope, other rays that are 
also parallel to each other, but coming from a different direction are focused to a different 
point. The set of all such points forms a plane called the focal plane. In this way, the 
telescope effectively maps direction (angle) in the sky to position in the focal plane. In a 
perfect telescope, this mapping is linear. In practice, there is usually some nonlinearity 
(called distortion) that increases with distance from the center of the focal plane, but in 
the central region the linear assumption is a good one. Thus, we may write 
 
 f=x α  (3.1) 
 
Where ( , )x y=x  are Cartesian coordinates in the focal plane, ( , )α β=α  are angular 
coordinates on the celestial sphere, centered on the direction that corresponds to the point 
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0=x , and f  is a constant of proportionality. Since x  has the dimension of distance and 
α  is a dimensionless angle (measured in radians), f  has units of distance. For the simple 
telescope shown in Figure 3.1, it is evident that f  is just the distance from the center of 
the lens to the focal plane, called the focal length of the lens. 

 
Figure 3.1. Image formation by a lens. Parallel rays are focused to a point in the focal 
plane. The lens maps the angle of the incident rays to position in the focal plane. 

 
The lens focuses light by refraction. When light propagates through a medium of 
refractive index n, the speed of propagation is  
 
 /c nυ = . (3.2) 
 
The wavefront is therefore retarded by an amount that is proportional to the thickness of 
the lens. To first order, the lens changes a plane wavefront into a spherical wavefront of 
radius f which converges to the focal point. Equivalently, once can consider rays, which 
are families of lines that are everywhere perpendicular to the wavefront. The refraction of 
rays at an interface between two media is given by Snell’s law 
 
 sin sinn nθ θ′ ′=  (3.3) 
 
where θ  and θ ′  are the angles if incidence and refraction that the incident and refracted 
rays make with a line normal to the surface, and n  and n′  are the indices of refraction on 
the corresponding sides of the surface. 
 
The case of reflection from a mirror is particularly simple since the angle of incidence 
equals the angle of reflection.  
 
By Fermat’s principle, the time taken for light to propagate from any point on the 
incident wavefront to the focus is the same for all rays (in a perfect telescope). This is 
equivalent to the statement that the optical path length (OPL) (or the optical path 
difference OPD) from any point on the wavefront to the focus is constant, where the OPL 
is defined to be the physical distance multiplied by the index of refraction. 
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Most optical systems, such as the lens shown in Figure 3.1, have an axis of rotational 
symmetry which passes through the center of the focal plane. Properties of the optical 
system, such as the location of images, magnification, etc, can be simply found by 
considering only rays that are arbitrarily close to the axis. For such paraxial rays, the 
angles of incidence and refraction are small and the sine functions that occur in (3.3) can 
be replaced by their linear approximation (ie just the angles themselves). The use of the 
linearized Snell’s law is called the Gaussian-optics approximation or first-order theory. 
The next terms in the series expansion of sinθ  are third order in θ , so the first correction 
to first-order theory is called third-order theory. As we shall see, third-order and higher 
terms correspond to optical aberrations which cause a blurring or distortion of the image. 
 
The image formed at the focal plane of the lens in Figure 3.1 is called a real image, 
because the light rays actually pass thought it. If a second convex lens is now added to 
the system, after the focus, one has a telescope that can be used for visual observations, 
as shown in Figure 3.2. Essentially, the second lens (called the eyepiece) acts as a 
magnifier that allows the eye to view the real image produced by the objective lens. 
Because of the focusing effect of the eyepiece, the rays appear to originate from a 
magnified virtual image, as shown in the figure. Real eyepieces actually contain several 
lenses, designed to minimize aberrations. The ratio of the angular size of the virtual 
image to the angular size of the source is called the magnification of the telescope. It can 
easily be shown that the magnification is equal to the ratio of the focal length of the 
objective lens to the focal length of the eyepiece (the distance at which it would focus 
parallel light).  

 
Figure 3.2. A simple telescope incorporating an eyepiece for visual observations. The 
eyepiece magnifies the real image, creating a virtual image of the source at infinity. The 
image is inverted. 

 
The focal length of a complex system of lenses is found by the construction shown in 
Figure 3.3. Extend a paraxial ray, entering the lens parallel to the axis, into the lens 
without deflection. Similarly, extend the corresponding ray converging to the focus, 
backward into the lens until it intersects the extended paraxial ray. The point of 
intersection defines a plane perpendicular to the axis called the principal plane. The 
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distance from the principal plane to the focal plane is the focal length. Since parallel light 
can in principle enter the lens from behind and be focused in front, there is a second 
principal plane defined for such rays.  Every lens thus has two principal planes. These 
generally do not coincide. The focal length of a complex optical system used as a 
telescope is also called the effective focal length (EFL), to distinguish it from the focal 
lengths of individual components. 

 
Figure 3.3. Principal planes (p1 and p2) and focal lengths of a complex optical system. 

 
An optical system generally has some sort of aperture that defines which rays are able to 
pass through the system. The optical system may also produce images of this aperture. 
The aperture and its images are called pupils. The first pupil encountered by the rays 
(usually the objective lens or primary mirror) is called the entrance pupil and the last 
pupil encountered before the rays exit the system is called the exit pupil. 

3.2 Optical invariants 
We have already encountered one invariant quantity in geometrical optics, the Snell 
invariant nθ , where θ  is measured with respect to the normal to a surface, which is 
invariant for paraxial rays. We can use the conservation of intensity to obtain a second 
invariant. 
 
Consider light entering an optical system. Let the area of the entrance pupil be A, and the 
solid angle subtended by two rays entering the system be Ω  (usually the solid angle 
encompassed by the field of view). Now, if Ω  is small (so that the cosine factor in (1.27) 
can be ignored) the product I Aν Ω  is the radiant power per unit frequency interval 
entering the system. If there are no absorption or reflection losses, the same power must 
pass through every pupil and exit the system. Also, if there are no losses 2 3/I nν ν  is 
conserved (the factor of 2n  accounts for the reduced propagation speed and momentum 
of light in a medium of refractive index n). The frequency of the radiation is not changed 
by lenses, mirrors, etc, so it follows that the quantity 2n AΩ  is conserved. Now both A 
and Ω  are purely geometric quantities, and n is an intrinsic property of the medium, so 
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this must also be true even in the presence of absorption or reflections losses. The 
quantity 2n AΩ  is related to the Lagrange invariant H of geometrical optics, 
 
 ( )1/ 2H n A∝ Ω  (3.4) 
 
 It is not restricted to pupils, but applies throughout the optical system to any area A that 
is perpendicular to the light cone described by Ω . 
 
We can use this result to obtain a relation between the diameters of the entrance and exit 
pupils and the magnification in the telescope of Figure 3.2. Let primed quantities denote 
the exit pupil and unprimed the entrance pupil. Let D and D′  be the pupil diameters. 
Now the angular size of the source, and its virtual image, are related by the ratio of solid 
angles for the rays, thus 
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 (3.5) 

 
since 2n AΩ  is conserved, and n is the same for the input and output rays. This sets a 
lower limit on the magnification of telescopes used for visual observations. In order for 
the rays exiting the telescope eyepiece to enter the eye, the diameter D′  of the exit pupil 
must be less than the diameter of the pupil of the eye. This is about 7 mm for a dark-
adapted human eye. Thus the magification must be greater than / 7 mmD , otherwise light 
will be lost. 
 
We can now prove two useful and very general magnification formula. Consider a 
rotationally-symmetric optical system that receives rays emitted from an source at point 
O , and focuses them to an image at point O′ , as shown in Figure 3.4. Let θ  be the angle, 
made with the axis, by a ray and θ ′  be the angle of the same ray as it approaches the 
image. If the source is displaced by an infinitesimal distance dx  perpendicular to the 
optical axis, the image will be displaced by a distance dx′ . The ratio /TM dx dx′=  is 
called the transverse magnification. Since the system has rotational symmetry, the same 
magnification applies to displacements in the y direction, /TM dy dy′= . Therefore, the 
infinitesimal area dA dxdy=  is mapped to the area 2

TdA dx dy M dA′ ′ ′= = . By rotational 
symmetry, all rays leaving the source within a cone of angle θ  will arrive at the image 
within a cone of angle θ ′ . Then, since 2n AΩ  is conserved, we have 
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Figure 3.4. Transverse magnification. The ratio dx’/dx depends only on the indicated 
angles and indexes of refraction. 

 
Now suppose that the source is moved an infinitesimal distance dz along the axis and the 
image moves a distance dz′ , as in Figure 3.5 The ratio /LM dz dz′=  is called the 
longitudinal magnification. The area dA dydz=  is mapped to T LdA dy dz M M dA′ ′ ′= = . 
Now, the radiant power passing through the area dA  in the direction θ  within a solid 
angle dΩ  is sinI dAd I dAdν νθ θΩ ≈ Ω , which must equal the corresponding quantity 
(with primes) for the area dA′ . Thus, 
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In summary, we have the two magnification formulae 
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valid for small angles θ  and θ ′  measured from the optical axis. 
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Figure 3.5. Longitudinal magnification. The ratio dz’/dz depends only on the indicated 
angles and indexes of refraction. 

 

3.3 Optical aberrations 
Gaussian optical theory tells us about the location of images and pupils, and the 
magnification or image scale. However, it does not describe the sharpness or quality of 
the images. For this we must consider higher-order theory. The main aberrations (effects 
which degrade the image quality) can be found from third-order theory. In practical cases 
it may also be necessary to include fifth or higher orders, or trace exactly the path of rays 
through the system using a computer program. 

3.3.1 Optical shapes 
The focusing effect of optical components depends on the shapes of their surfaces. These 
can be spherical, conic, or aspheric. Surfaces that have rotational symmetry about an axis 
are most conveniently described in a cylindrical coordinate system ( , , )r zφ  with the z 
axis coincident with the symmetry axis. A surface may then be described by giving the 
position z of a point on the surface as a function of the radial distance r from the axis. 
This can be written as a Taylor series as follows (because of the rotational symmetry, 
only even powers of r can appear): 

 ( ) ( )
2 4 6

2 6
0 3 51 (1 )

2 8 16
r r rz z b b A r
R R R

= + + + + + + +�  (3.9) 

Here R is the radius of curvature of the surface, 0z  is the position of the vertex, and b is 
called the conic constant. Different ranges of b describe conic surfaces, as indicated in 
Table 3.1. ( )6A r  denotes higher-order terms which, if present, indicate that the surface is 
aspheric rather than spherical or conic. 
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Table 3.1 Conic Surfaces 

Range Surface 
1b < −  hyperboloid 
1b = −  paraboloid 

1 0b− < <  prolate ellipsoid 
0b =  sphere 
0b >  oblate ellipsoid 

  

3.3.2 Third-order theory 
An elegant and general treatment of third-order aberrations of symmetric optical systems 
was published by Hamilton in 1833. Consider a plane wavefront entering a telescope. 
After passing through the optics, it appears at the exit pupil as a spherical wave 
converging to the focus. If the telescope is perfect, the wavefront will be exactly spherical 
and will propagate to a point (ignoring diffraction effects). However, if aberrations are 
present, the wavefront will deviate from a sphere. The optical path length error of any 
point on the wavefront, compared to the perfect sphere, is called the aberration function 
W. It can be written in terms of three fundamental parameters that can be taken to be the 
field angle, measured between the axis and the direction of the radiation entering the 
telescope, normalized to 1 at the edge of the field (σ ), radial position of the point on the 
wavefront, normalized to 1 at the edge of the pupil ( ρ ), and the azimuth angle of the 
point measured from the plane containing the axis and the incident direction (φ ). 
 
Hamilton proved that because of the symmetry of the system, the aberration function 
must have the form 
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 (3.10) 

 
We see that there are two first order terms (terms quadratic in σ  and ρ ) and five third 
order terms (terms of fourth-order in σ  and ρ ). Their effects are summarized in Table 
3.2. The first order terms represent errors in position of the image (ie Gaussian-optic 
errors). For example, a term proportional to 2ρ  means that the wavefront has a different 
curvature than the reference sphere. It will therefore converge to a point in front of, or 
behind, the nominal focal plane. This term represents a longitudinal focus error, and can 
be removed by properly focusing the telescope. Similarly, the term proportional to 

cosσρ φ  represents a tilt of the wavefront, compared to the reference sphere. This means 
that the images will all be displaced transversely in the focal plane. This is referred to as a 
guiding, or tip-tilt error, and can in principle be removed by properly guiding the 
telescope.  In contrast, the third-order terms represent fundamental aberrations that 
cannot be removed by manipulating the telescope. The five third-order types are called 
the Seidel aberrations, after Philipp Ludwig von Seidel who first studied them. 
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Table 3.2 The Seidel aberrations 

 
Term Aberration 

0 4
40k ρ  spherical aberration
1 3
31 cosk σρ φ  coma 
2 2 2 2
22 cosk σ ρ φ astigmatism 
2 2 2
20k σ ρ  field curvature 
3 3
11 cosk σ ρ φ  distortion 

 
It is the task of the optical designer to minimize or eliminate as many of these aberrations 
as possible, while using the minimum number of optical elements or surfaces. As a rule, 
it is theoretically possible to eliminate one aberration for each surface in the system, 
although in practice more surfaces may be needed, particularly if refracting elements are 
involved. The index of refraction of optical glasses varies with wavelength, a 
phenomenon known as dispersion. Because of this, the imaging properties of a refractive 
system will vary with wavelength, which leads to chromatic aberration – a situation 
where different wavelengths converge to different positions. The designer must choose 
optical glasses and optimize the design in order to minimize this effect. 
 
Let us now examine the Siedel aberrations individually. For an interactive display of 
wavefront plots and maps for these aberrations, please look at http://wyant.opt-
sci.arizona.edu/seidelWavefrontMaps/seidel.htm. 

3.3.3 Spherical aberration 
This aberration is independent of field angle (σ ), which means that the images have the 
same form all over the image. It corresponds to a focus error that increases quadratically 
with radius in the pupil. In other words, rays passing close to the center of the pupil focus 
at one point, but rays at different radial distances focus at different longitudinal points. 
There is no focus position that results in a sharp image. This aberration is most severe in 
fast optical systems (ie those with large numerical aperture (small f-number) due to the 
strong dependence on ρ . This aberration crippled the Hubble Space Telescope until it 
was corrected by the insertion of additional specially-designed optics. It resulted from an 
error in the positioning of lenses that were used to test the shape of the primary mirror 
when it was being made. To illustrate the effect of a small amount of spherical aberration, 
Figure 3.6 and Figure 3.7 show an unaberrated wavefront and point spread function 
(PSF, the image of a point source), including diffraction effects, and the same quantities 
with 2 waves of spherical aberration (a maximum OPD error of two wavelengths). 
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Figure 3.6 Aberration function and Point Spread Function for a perfect telescope. 
(Courtesy of James C. Wyant). 

 

 
 

Figure 3.7 Aberration function and Point Spread Function exhibiting 2 waves of spherical 
aberration. The interval between successive dark bands in the aberration function 
corresponds to an OPD of 1 wavelength (Courtesy of James C. Wyant). 

3.3.4 Coma 
This is the most serious aberration after spherical aberration. Because of the linear 
dependence on field angle, the images at the center of the field are fine, but grow 
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progressively worse with distance from the center. The aberration corresponds to a tilt 
and focus shift. Rays from at increasing radial positions in the pupil are increasingly 
shifted transversely away from the field center and defocused. The resulting images have 
the appearance of small comets pointing toward the field center, hence the name coma. 
Like spherical aberration, this aberration is most serious in fast optical systems. Figure 
3.8 shows the aberration function and PSF of a system exhibiting 2 waves of coma. Coma 
and spherical aberration are so important that virtually all astronomical telescopes are 
designed to correct them. 
 

 
 

Figure 3.8. Aberration function and PSF exhibiting 2 waves of coma (Courtesy of James 
C. Wyant). 

3.3.5 Astigmatism 
This term corresponds to a longitudinal focus shift that depends on the azimuthal position 
of the rays in the pupil. Rays in the plane defined by the field angle focus at one distance 
while rays in the perpendicular plane focus at another. All other rays focus at 
intermediate distances. The image shape ranges from circular to linear, depending on the 
choice of focus. This aberration increases quadratically with field angle. Near the center, 
it is generally less important than coma, but grows faster with increasing angle. In most 
large astronomical telescopes, astigmatism (and often coma also) is removed using a set 
of lenses, called an optical corrector, placed in the converging beam. 
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Figure 3.9. Aberration function and PSF exhibiting 2 waves of astigmatism (Courtesy of 
James C. Wyant). 

3.3.6 Field curvature  
This aberration differs from the previous three in that it is possible to find a focal surface 
where the image is sharp. However, the presence of this term indicates that this surface is 
not a plane but is curved (spherical, to first order). The radius of curvature PR of the focal 
surface is related in a simple way to the radii of curvature of the optical surfaces in the 
system, and is independent of their position and conic shapes. It is given by the Petzval 
Sum: 
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where iR  is the radius of the i-th surface and in  and 1in −  refer to the index of refraction 
that the ray is in after and before passing through the i-th surface, respectively. For 
reflecting surfaces, the same equation holds if we take 1 2in−∆ = − . This shows that it is 
possible to eliminate field curvature by an appropriate choice of curvatures for the 
individual optical surfaces in the telescope. For an all-reflecting telescope one requires 
that the sum of the curvatures (ie the reciprocal radii) be zero. 
 
It is also possible to correct field curvature in many cases by inserting a lens just in front 
of the focal plane. This lens has a curved surface, with radius and index of refraction 
chosen to bring the Petzval sum to zero. Because the lens is placed very close to the focal 
plane it has very little effect on other aberrations. When a surface is close to the focus, 
the beam leading to any focal point intercepts just a small area of the surface, over which 
the OPD error is negligible. However, the focal point is displaced backward by a distance 
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that is proportional to the thickness of the glass, which explains how the lens can remove 
field curvature. Such a lens is called a field flattener. 

3.3.7 Distortion 
The final aberration is again one that does not affect the quality of images, but instead 
affects their positions in the field. This term corresponds to a transverse shift in focus 
position in the radial direction with a cubic dependence on field angle. This is equivalent 
to a magnification or image scale that varies with distance from the field center. If the 
magnification increases with field angle, we have positive or pincushion distortion; if it 
decreases we have negative or barrel distortion, as shown in Figure 3.10. Distortion is 
the least serious of the Seidel aberrations, and is often ignored. It results in the measured 
positions of star images being incorrect, but this is easily rectified by a suitable 
coordinate transformation.  
 
There is one exception where distortion is important. Telescopes used for scanning 
applications, such as CCD drift scanning, require that the images move in a linear manner 
in order to prevent image smearing in the CCD. In this case, the telescope optics must be 
free of distortion. 
 
 

 
 

Figure 3.10. Illustration of distortion. 

3.4 Telescope types 
All major astronomical telescopes are of the reflecting type. That is to say, the primary 
optical element that collects and focuses the light is a mirror. Mirrors have a number of 
advantages over lenses. They can be made in large sizes, they can be supported against 
gravitational flexure, they require figuring of only a single surface, and they produce no 
chromatic aberration. Lenses are still used, in correctors and for small or auxiliary 
telescopes. 
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3.4.1 Single-mirror telescopes 
The simplest telescopes employ a single primary mirror to produce an image on a 
detector located at what is called the prime focus. By making the primary mirror 
parabolic ( 1b = − ), spherical aberration is eliminated. Coma and astigmatism remain (and 
also field curvature and distortion), so large telescopes employ a prime focus corrector 
which consists of a set of lenses located a short distance in front of the prime focus. Most 
telescopes use a three-lens design, of a type first suggested by Wynne. Telescopes used 
for drift-scan observations, such as mercury mirror telescopes, use a four-element design 
to also remove distortion. 
 
In the prime focus type, the detector and corrector block some of the incident radiation, 
casting a shadow on the primary mirror. For large telescopes this is not usually a serious 
problem as it results in only a few percent of the light being lost. In small telescopes, a 
flat diagonal mirror can be used to deflect the light to a focus just outside the incident 
light path. This technique was fist used by Newton, so such a telescope is called 
Newtonian. 

3.4.2 Two-mirror telescopes 
Two-mirror telescopes are normally of the Cassegrain or Gregorian type, illustrated in 
Figure 3.11. In the former, a convex secondary mirror is place before the prime focus 
which directs the light through a hole in the center of the primary mirror to a focus (the 
Cassegrain focus) not far behind the primary mirror. In the latter, the secondary mirror is 
concave and located after the prime focus. Both systems have the advantage of providing 
easy accessibility to the focus – one can mount small instruments, such as a spectrograph, 
directly on the back of the telescope structure behind the primary mirror. Because the 
secondary mirror has curvature, it provides magnification factor (an increase in the EFL) 
typically in the range 3-12. This makes it possible to achieve focal lengths that are much 
longer than the physical size of the telescope – a great advantage in cost and convenience. 
 

                 
 

Figure 3.11. Comparison of Cassegrain (left) and Gregorian (right) telescopes. 

 
In both the Cassegrain and Gregorian types, the primary mirror is parabolic. The 
secondary mirror simply re-images the light converging to, or diverging from, the prime 
focus and directs it to the Cassegrain or Gregorian focus. In order to do this without 
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introducing spherical aberration, the Cassegrain secondary mirror must have a hyperbolic 
shape, while the Gregorian secondary is elliptical. Cassegrain telescopes are more 
common than Gregorian, in part because they are more compact. The relatively large 
focal lengths of these system (compared to the prime focus) means that they have smaller 
numerical apertures (larger f numbers). The off-axis aberrations (coma and astigmatism) 
are therefore less severe and can be removed by a simpler corrector. Often, if the desired 
field of view is not large, these telescopes are used with no corrector at al. They do 
however suffer from a larger field curvature than does the prime focus because the small, 
steeply-curved secondary mirror increases the Petzval sum. 
 
Two variations of the Cassegrain system are in common use. If a flat diagonal tertiary 
mirror is inserted in front of the primary mirror, the beam returning from the secondary 
can be diverted sideways. In altazimuth telescopes (discussed in more detail below), this 
mirror is aligned with the altitude axis, about which the telescope optical assembly 
pivots, so that the focus is stationary, at least with respect to this motion. This is called a 
Nasmyth focus. It allows relatively large instruments to be mounted on Nasmyth 
platforms attached to the telescope that can be reached with only three reflections. The 
tertiary mirror can normally be rotated 180 degrees about the symmetry axis in order to 
direct the light to a second Nasmyth focus, thus providing a rapid change between two 
instruments. 
 
In telescopes having mounts (axes parallel and perpendicular to the Earth’s rotation axis) 
additional mirrors can be used to direct the light from the tertiary mirror along the polar 
axis and, finally, to a fixed focus that does not move no matter how the telescope is 
pointed. This is the Coudé focus. Here very large instruments, such as high-dispersion 
spectrographs, can be located. 
 
While the Coudé provides a stationary image, and The Nasmyth focus is stationary with 
respect to motions along one axis, in both cases the field of view rotates. A star at the 
center of the field will be stationary, but other stars will rotate about it as the telescope 
tracks. For imaging applications, where this is important, it can be corrected by either 
rotating the detector itself, or by passing the light through an image rotator (a set of flat 
mirrors or prisms which provide opposite field rotation when they are physically rotated 
about the axis of the beam). 
 
If a prime focus is not required, it is possible to use the added degree of freedom provided 
by two mirrors to correct two of the Seidel aberrations. These are normally taken to be 
spherical aberration and coma. The Ritchie-Chrétien design employs elliptical surfaces 
on the primary and secondary mirrors to produce a “Cassegrain” focus that is free from 
both these aberrations. In wide-field applications, a corrector is still required, to remove 
at least the astigmatism and field curvature. The 2.5-meter Carnegie telescope at Las 
Campanas Observatory in Chile is of the Ritchie-Chrétien type and provides a very large 
field of view with a diameter of 2 degrees. 
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3.4.3 Three-mirror telescopes 
Telescopes employing three mirrors can in principle correct three Seidel aberrations. A 
general analysis of the theory three-mirror systems has been given by Korsh (1972). 
However, a clever three-mirror design was discovered much earlier by M. Paul (1935). In 
Paul’s design, the parabolic primary and convex secondary mirrors alone form an afocal 
telescope (a telescope which has an infinite focal length). In other words, the beam of 
rays emerging from the secondary mirror does not converge or diverge. If the secondary 
mirror is also parabolic, the 2-mirror system is free from the first three Seidel aberrations. 
To produce a focus, a third mirror, concave and spherical with the same curvature as the 
secondary mirror, is placed between the primary and secondary mirrors. It receives the 
parallel beam from the secondary mirror and focuses it. If the tertiary mirror is located so 
that its center of curvature is located at the vertex of the secondary mirror, it will act as a 
Schmidt telescope. The spherical aberration of tins mirror is cancelled not with a 
corrector lens, but by removing the parabolic shape from the secondary mirror, which 
now also becomes spherical. The resulting Paul telescope, is free from spherical 
aberration, coma and astigmatism. This design gives a very large field of view with well-
corrected images. Because the secondary and tertiary mirrors have equal (but opposite) 
curvature, their contribution to the Petzval sum cancels leaving only the relatively small 
contribution from the primary mirror. Thus the field curvature is comparable to that of a 
prime-focus telescope. In a modification due to Baker (1945), the curvature of the tertiary 
mirror is adjusted to make the Petzval sum zero. A small aspheric correction is added to 
the secondary mirror in order remove the residual spherical aberration (which otherwise 
would no longer cancel completely). The Paul-Baker design is therefore free from all 
Seidel aberrations except distortion! 
 
The advantages of a three-mirror telescope come with the penalty of increased cost and 
complexity. To date, no major telescope has been built using a three-mirror design. 
However, these systems are being seriously considered for the next generation of large 
telescopes. 

3.4.4 Catadioptic telescopes 
Catadioptic telescopes employ both mirrors and lenses as an integral part of their design. 
The earliest example is the Schmidt telescope. Bernhard Schmidt realized that a spherical 
mirror has no optical axis, only a center of curvature. It must therefore be free of all off-
axis aberrations, leaving only spherical aberration. If that could be removed by another 
optical element without introducing an optical axis, the resulting telescope would have a 
very wide field of view. Schmidt achieved this by introducing a lens, of diameter 
comparable to the primary mirror. However, this lens had negligible curvature, so its 
focusing effect was minimal. The thickness of the lens was nearly constant, but included 
a term proportional to the fourth power of the radius. This was chosen to exactly cancel 
the spherical aberration of the primary mirror - recall that the wavefront error for 
spherical aberration is proportional to the fourth power of the radius (Table 3.2). In order 
to avoid introducing a preferred axis, he located this lens at the center of curvature of the 
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primary mirror. (The lens itself has an axis, but since it has no focusing power, other than 
the small variation needed to correct the spherical aberration, this has only a small effect). 
 
Schmidt telescopes make excellent wide-field survey instruments. For example, the 1.2m 
Ochin telescope at Palomar was used, in the early 1950s, to photograph the entire 
Northern sky using photographic plates, each covering 50 square degrees.  The Palomar 
Observatory Sky Survey (POSS) has proven to be an indispensable resource for 
astronomy. It is presently being repeated using higher-quality plates that are now 
available (the POSSII), and a complimentary survey of the Southern sky has been made 
using a sister telescope built and operated by the European Southern Observatory (ESO) 
in Chile. 
 
The Schmidt telescope has a steeply curved field of view – the center of curvature of the 
focal surface is the same as the center of curvature of the primary mirror, as it must be 
because of the spherical symmetry of the system. This can be removed by a field flattener 
or, in the case of the 1.2m, the glass photographic plate is bent and held at the requisite 
curvature by clamps. 
 
Several variation of the Schmidt design have become popular. In the Baker-Schmidt 
design, a sphericial secondary mirror is added to reflect the light to an accessible focus 
behind the primary mirror. In other Schmidt-Cassegrain systems, commonly used in 
small telescopes, the corrector lens is moved closer to the primary mirror and used to 
support the secondary mirror, which is hyperbolic (Figure 3.12). This destroys the 
symmetry of the original Schmidt design, but the corrected field of view is still 
reasonably large. This makes for a compact high-performance telescope. 
 

 
 

Figure 3.12. A typical Schmidt-Cassegrain telescope. The curved surface of the corrector 
lens is shown greatly exagurated. 

 
The Maksutov telescope is similar conceptually to the Schmidt. However, the spherical 
aberration of the primary mirror is removed not by an (almost) flat lens, but by a steeply 
curved meniscus lens. This lens has little focusing power, because the curvatures of the 
two surfaces are almost equal, but it serves to introduce spherical aberration equal and 
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opposite to that of the spherical mirror. As with the Schmidt, many variations are 
possible, including Cassegrain systems in which the secondary mirror is mounted on the 
corrector lens.  
 

 
 
 

Figure 3.13. A Maksutov telescope.The spherical aberration introduced by the meniscus 
lens corrector cancels that of the spherical primary mirror. 

3.4.5 X-ray telescope optics 
The optical systems discussed so far have application at radio, microwave, infrared, 
optical and ultraviolet wavelengths. At  shorter wavelengths the reflectivity of metals 
falls, so conventional optics cannot be used to image X-rays. However, if the angle of 
incidence is close to 90 degrees, satisfactory reflectivity can be obtained. X-ray 
telescopes therefore employ grazing-incidence optics. Figure 3.14 shows the optical 
design of the Chandra X-ray telescope. The surface shapes are like those of a Cassegrain 
system, with a parabolic primary and hyperbolic secondary mirror. However, as the 
figure shows, they are illuminated at grazing incidence. In order to increase the collecting 
area, four concentric sets of mirrors are employed, as shown in Figure 3.15. The entrance 
pupil of the telescope is a set of four concentric annuli. 

3.5 Mechanical and control systems 
A telescope consists of more that just optical components. The optics must all be held 
accurately in position with respect to each other, and a means must be provided of 
pointing and tracking astronomical objects. At the same time, the effects of gravitational 
forces, thermal variations, etc must all be compensated or minimized. 
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Figure 3.14. Grazing-incidence optics employed in the Chandra X-ray telescope. 

 

 
 

Figure 3.15. Arrangement of mirrors in the Chandra X-ray telescope. 

 

3.5.1 Telescope mounts 
The moving optical components of a telescope are generally mounted in a framework 
called the optical tube assembly (OTA). In small telescopes this is usually a tube with the 
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primary mirror at one end. In large telescopes the mass and wind resistance of a tube 
would be a disadvantage so a lightweight open steel framework is employed.  
 
In order for the telescope to point and track objects, the OTA and associated structure 
must rotate about two orthogonal axes. There are two distinctly-different ways to 
accomplish this. In equatorial mounts one axis, called the polar axis, is aligned parallel 
to the rotation axis of the Earth. If the telescope is rotated about this axis, in the opposite 
sense as the Earth rotates, distant stars and galaxies will appear stationary regardless of 
their direction. The other axis (the declination axis) allows the telescope to turn in a 
North-South direction and thereby access any point in the sky.  
 
While equatorial mounts offer convenience in tracking, they are bulky because to the 
direction of the polar axis depends on latitude and is not aligned vertically or horizontally 
(unless the observatory is on the equator or at the North or South pole). The altazimuth 
mounting system offers simplicity and light weight at the expense of more complicated 
tracking requirements. In an alt-azimuth mount, one axis is vertical (the azimuth axis) 
and the other (the altitude axis) is horizontal. Since there axes are not alighted with that 
of the Earth, tracking requires motion about both axes at rates that depend on the 
direction that the telescope is pointed. This is accomplished by precise drive motors 
under computer control. The most recent large telescopes have employed this type of 
mount as it offers considerable cost savings. A disadvantage of altazimuth designs is that 
a region of sky surrounding the zenith (the direction directly overhead) is inaccessible 
because very high rate azimuth motions would be needed to track objects in this region. 
For this reason, an area of several degrees diameter is excluded. Another disadvantage, 
compared to the equatorial design, is that the field of view rotates as the telescope tracks. 
This can be compensated by rotating the instrument or by using a field rotator, but this is 
an added degree of complexity. 

3.5.2 Telescope control systems 
Telescopes are point and track with the help of encoders attached to the mechanical axes. 
Theses sense the position of the telescope with a resolution of a fraction of an arcsec. The 
actual direction in the sky to which the telescope is pointing depends on many factors in 
addition to the positions of the axes. These include the date and time, the type of 
mounting system, errors in alignment, gravitational flexure, thermal expansion, 
atmospheric refraction, etc. The telescope is normally designed in such a way as to 
minimize the effects of thermal expansion (the mirrors are always made of materials that 
have extremely low thermal expansion coefficients). Effects of gravitational flexure and 
atmospheric refraction can be calibrated by pointing the telescope to stars at known 
positions and mapping the pointing errors. These errors are entered into a lookup table 
and used to correct the telescope pointing. 
 
The mapping between celestial coordinates and telescope position depends on the date 
and time. Celestial positions are described by right ascension (α ) and declination (δ ), 
which are measured with respect to the celestial equator and the vernal equinox (the 
position where the ecliptic intersects the celestial equator). In an equatorial mount, these 
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are directly related to the positions of the telescope axes. As the Earth rotates, the right 
ascension of a fixed direction (with respect to the Earth) increases. The right ascension of 
the meridian (the great circle passing through the zenith and celestial poles) is called the 
sidereal time (s), and is the primary factor determining whether a particular right 
ascension can be observed. The rotation angle of the polar axis is called the hour angle 
(h), and is measured westward from the meridian. These quantities are therefore related 
by the simple formula 
 s hα = −  (3.12) 
 
Another quantity of interest is the zenith angle Z of the object. This can be found using 
spherical trigonometry. The result is 
 
 cos sin sin cos cos cosZ l l hδ δ= + , (3.13) 
 
where l is the latitude of the telescope. 
 
For an altazimuth telescope, the altitude angle, measured upward from the horizon, is just 

/ 2 Zπ − , and the azimuth angle φ , measured from North, is given by 
 
 sin cos sin / sinh Zφ δ= − . (3.14) 
 
While pointing is usually done entirely by reference to coordinates, accurate tracking 
requires a guide star and feedback loop. A suitable star in the peripheral field of the 
telesdcope is selected and imaged with a small video camera. The position of the star 
image in the video field is sensed and an error signal is generated and sent to the 
telescope control system (TCS). The TCS converts this into small corrections in the 
pointing of the telescope and the tracking rate, in order to keep the guide star stationary. 
 
The TCS is generally coupled to other systems, such as the rotation of the dome (to keep 
ithe slit oriented in the direction that the telescope is pointing), the detector data 
acquisition system (to provide timing, pointing and other information), instruments (to 
provide control) and various telescope mechanical systems. A large modern astronomical 
telescope is a very complex piece of equipment controlled by sophisticated hardware and 
software systems. 
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Exercises 
 
3.1 A 2048 2048× CCD array with 15-um pixels is placed at the f/8 Cassegrain focus 

of a 4-meter telescope. What is the image scale in arcsec/pixel and what are the 
angular dimensions of the region of sky covered by the CCD? 

3.2 Prove that the focal length of a mirror is ½ its radius of curvature.  

3.3 By direct geometrical ray tracing, determine the linear and angular diameter of the 
image formed at the (paraxial) focus of a spherical mirror, of an infinitely distant 
point source. Express the answer in terms of the focal length and f number of the 
mirror. 

3.4 Show that a flat plat of glass, of thickness t and index n, placed in a converging 
beam, and oriented perpendicular to the axis, moves the position of the focal 
plane a distance ( 1) /t n n− .  

Using Snell’s law, evaluate the OPD to third order. What aberration is introduced 
by the glass? 

3.5 The 3.6m Canada-France Hawaii Telescope has an f/2.8 primary mirror and an f/8 
Cassegrain focus. Assume that the f/8 focus lies 1.0 metres behind the vertex of 
the primary mirror and determine the radius of curvature of the focal surface. In 
what direction does the focal surface curve? 
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4 Imaging 
This chapter deals with a number of topics related to image formation and image quality. 
A quantitative description of imaging is developed and the theory of atmospheric seeing 
is summarized. The chapter concludes with a discussion of interferometry and aperture 
synthesis techniques.  

4.1 Linear image theory 
We begin with a general analysis of imaging systems. This applies not only to telescopes, 
but any kind of system that focuses or modifies images, the Earth’s turbulent atmosphere 
for example. 

4.1.1 The telescope as a linear system 
A telescope can be considered as a linear system. It is a device that transforms an input 
image to an output image. The input image is represented by the distribution of intensity 

( , )I x y  as a function of coordinates ( , )x y  which we take to taken to be angular position 
in the sky. The output image ( , )I x y′  is the distribution of intensity in the focal plane as a 
function of the same angular coordinates. Because Maxwell’s equations are linear in the 
electric and magnetic fields, one can write the amplitude of these quantities in the output 
image as a linear function of the amplitude in the input image. (If polarization is 
important, we must consider the vector fields rather than just their scalar amplitudes, but 
normally the scalar treatment is sufficient.) Thus, we write 
  
 ( )a a′ =O  (4.1) 
 
where a  and a′ are the input and output amplitudes 
 
 I aa∗=  (4.2) 
 
and O  is a linear operator. Linear means that 
 
 1 1 2 2 1 1 2 2( ) ( ) ( )c a c a c a c a+ = +O O O  (4.3) 
 
where 1c  and 2c  are constants. Given that the imaging properties of a telescope (and the 
atmosphere also) are fully described by a linear operator, we can now apply the standard 
tools of linear analysis. 
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4.1.2 Transfer function 
We start with a Fourier decomposition. Any reasonably continuous function ( , )a x y  can 
be written in terms of the Fourier integral 
 
 2 2( ) ( ) ia a e d kπ ⋅= ∫

k xx k�  (4.4) 
 
where ( , )x y=x , the varibles ( , )x yk k=k  describe spatial frequencies, and the integral is 
taken over the infinite two-dimensional plane. The complex function ( )a k�  describes the 
amplitudes and phases of the spatial frequencies that comprise the image. It can be 
obtained from the inverse transform of the amplitude 
 
 2 2( ) ( ) ia a e d xπ− ⋅= ∫

k xk x�  (4.5) 
 
Similarly, we may write 
 
 2 2( ) ( ) ia a e d kπ ⋅′ ′= ∫

k xx k�  (4.6) 
 
for the output image. 
 
According to (4.1) and (4.3), 
 
 ( )2 2( ) ( ) ia a e d kπ ⋅′ = ∫

k xx k� O . (4.7) 
 
Comparing (4.7) and (4.6), we see that O  must have the form 
 
 ( )2 2( )i ie O eπ π⋅ ⋅=k x k xkO  (4.8) 
 
where ( )O k  is some function of k  alone, and 
 
 ( ) ( ) ( )a O a′ =k k k� � . (4.9) 
 
In other words, the Fourier components of the output image are just the Fourier 
components of the input image multiplied by the function ( )O k . This function is called 
the optical transfer function (OTF) of the system. 

4.1.3 Impulse response 
Consider the response to an input image that has the form of a delta function (a distant 
star, for example), 
 ( ) ( )a δ=x x . (4.10) 
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The delta function has the integral representation 
 
 2 2( ) ie d kπδ ⋅= ∫

k xx  (4.11) 
 
so its Fourier transform is the unit function 
 ( ) 1δ =k�  (4.12) 
  
Using (4.9), (4.11) and (4.12) we find, for the amplitude of the output image, 
 

 
2 2( ) ( )

( ) ,

ia O e d k

O

π ⋅′ =

=
∫

k xx k

x�

 (4.13) 

 
which is just the inverse Fourier transform of the OTF. This amplitude is called the 
impulse response (IR). Equivalently, the OTF is the Fourier transform of the impulse 
response. 

4.1.4 Point spread function 
We are usually more interested in the intensity distribution in the image, as this is what 
most detectors respond to. The intensity distribution ( )I ′ x  for the image of a point source 
is called the point spread function (PSF). From (4.2), 
 
 2( ) ( )I a x′ ′=x  (4.14) 
 
so the PSF is the square of the IR. It is usual to normalize the PSF so that its integral, 
over the image plane, is unity 
 2( ) 1I d x′ =∫ x  (4.15) 
 

4.1.5 Modulation transfer function 
If the light is incoherent, so that interference effects can be ignored, the linear analysis 
can be applied directly to intensities. As before, we obtain the OTF, but now it refers to 
intensities rather than amplitudes, and is the Fourier transform (F ) of the PSF. In 
general, the OTF is a complex quantity and can be written in the form 
 
 ( )( ) ( )exp ( )O M iP=k k k  (4.16) 
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Where ( )M k  and ( )P k  are real-valued function functions, called the modulation 
transfer function, (MTF) and phase transfer function (PTF) respectively. The MTF is 
therefore the modulus of the OTF.  

4.2 Fourier imaging theory 
In this section we consider diffraction effects and show that imaging devices are in fact 
Fourier transform machines. 
 
Consider a telescope imaging a very distant source of radiation. In the entrance pupil P  
of the telescope, we set up coordinates ( , )x yq q=q  which describe the position of any 
point in the pupil. Let the amplitude of the radiation of wavelength λ  (that is, radiation 
with wavelength in a small but finite interval containing λ ) at that point be ( )a q . In the 
focal plane we set up angular coordinates x . For any given point in the focal plane, the 
components of x are the angles, measured from the optical axis, of the incident radiation 
that is focused that point. 
  
According to the Huygens-Fresnel principle, to obtain the amplitude in the focal plane, 
we sum over all possible contributions from the pupil including the phase factors that 
result from propagation 

 22( ) ( )exp ( , )ia a L d qπ
λ

 =   
∫x q q x
P

 (4.17) 

 
Here ( , )L q x  is the optical path length through the telescope from the point q  to the point 
x . 
 
Now suppose that the telescope is free from aberrations. That is to say, it focuses all 
incident plane waves to points in the focal plane. Then by Fermat’s theorem, the optical 
path length from a point x  in the focal plane to all points in a plane, centered on the 
entrance pupil, whose normal is oriented at angle x  with respect to the optical axis must 
be constant (we have assumed here that the angle is small). To within an unimportant 
constant phase factor, we may then replace ( , )L q x  in (4.17) with the perpendicular 
distance from the point q  to the plane that corresponds to point x . Thus,  
 
 ( , )L const= ⋅ +q x x q  (4.18) 
 
Ignoring the constant factor, (4.17) now becomes 
 

 22( ) ( ) exp ia a d qπ
λ

 = ⋅  
∫x q x q
P

. (4.19) 

 
If we define the dimensionless coordinates /λ=u q , and define the amplitude ( )a u  to be 
zero outside the pupil so that the integral can be extended to infinity, (4.19) becomes 
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 2 2 2( ) ( ) ia a e d uπλ
∞

⋅

−∞

= ∫
x ux u  (4.20) 

 
From this it can be seen that the amplitude distribution in the focal plane is proportional 
to the inverse Fourier transform of the amplitude distribution in the entrance pupil. 
 
For functions that have circular symmetry, the two-dimensional Fourier transform 
becomes the Hankel transform 
 

 

2
2 2 cos

0 0

2
0

0

( ) ( )

2 ( ) (2 )

ia a e d d

a J d

π
π ρθ φθ λ ρ φρ ρ

πλ ρ πρθ ρ ρ

∞

∞

=

=

∫ ∫

∫

 (4.21) 

 
where ,θ ρ= =x u  and we have used the integral form of the Bessel function 
 

 
2

( cos )

0

1( )
2

i xJ x e d
π

φ νφ
ν φ

π
−= ∫ . (4.22) 

4.2.1 The Airy profile 
Let us now apply this result to determine the PSF of an aberration-free telescope having a 
circular aperture. Consider a plane wave traveling parallel to the optical axis. Inside the 
entrance pupil the amplitude is constant and outside it is zero, so we write 
 
 0( ) ( )a a P=u u  (4.23) 
 
where ( )P u  is called the pupil function. For a circular aperture of diameter D, it has the 
form 
 ( ) ( / )P Dλρ= Πu  (4.24) 
 
where 

 
1 1/ 2

( )
0 1/ 2

ρ
ρ

ρ
<=

Π ≡  >
 (4.25) 

 
From (4.21), the amplitude distribution in the focal plane is now given by  
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/ 2
2

0 0
0

2
0 1

( ) 2 J (2 )

2J ( / )
4 /

D

a a d

a D D
D

λ

θ π λ πρθ ρ ρ

π πθ λ
πθ λ

=

 =   

∫
 (4.26) 

 
where we have dropped the primes used earlier. Thus, the intensity in the focal plane is 
 
 0( ) ( / )I I Dθ θ λ= A , (4.27) 
 
where 0I  is the central intensity and ( )xA  is the Airy profile, defined by 
 

 
2

12J ( )( ) xx
x
π

π
 =   

A  (4.28) 

 
and illustrated in Figure 4.1. This function fall from unit value at the center to zero at the 
zeros of 1J . The angular radius of the first zero is approximately 1.22 / Dλ . 
 
 

 
 

Figure 4.1 PSF of an ideal telescope. The angular diameter of the central Airy disk is 
2.44 / Dλ , where λ  is the wavelength and D is the aperture diameter. 

The OTF for a perfect telescope can be obtained by taking the Fourier transform of the 
PSF ( )I ′ x .   
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( )
( )
( ) ( )
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( ) ( )

( )

( )

( ) ( )

O I

a a

a a

a a

∗

∗

=

′ ′= ⋅

′ ′= ∗

′ ′= ∗

k k

k

k

k k� �

F
F

F F
 (4.29) 

Where we have used the Fourier convolution theorem. (Note that by virtue of (4.4) and 
(4.20) the variables k  and u , both dimensionless, are identical.) Thus, the OTF is the 
convolution of the complex amplitude distribution in the exit pupil with itself (more 
accurately, with its complex conjugate). The OTF is therefore proportional to the 
convolution of the pupil function with itself 

 
 ( ) ( ) ( ) ( / )* ( / )O P P D Dλρ λρ∝ ∗ = Π Πu u u  (4.30) 
 
This function is real and depends only on the separation ρ . Therefore, the MTF equals 
the OTF. Evaluating the right hand side of (4.30) gives 
 

 1 2 2 2
0

2( ) 1 sin ( / ) 1 /M D D
D
λρρ λρ λ ρ

π
− = − + −  

. (4.31) 

 
which is plotted in Figure 4.1.  There is a steady decline with increasing spatial frequency 
because large frequencies are less well sampled by the aperture. The maximum spatial 
frequency that can be sampled by the telescope is D/λ. The diffraction-limited MTF 
(4.31) is the best possible response that an optical system with this diameter entrance 
pupil can provide. In practice, the response is generally less, due to optical aberrations, 
atmospheric seeing, and other such effects. 

4.3 Atmospheric seeing 
The Earth’s atmosphere is an inhomogeneous medium that affects the propagation of 
light. The index of refraction of air depends on wavelength, pressure and temperature 

 
6

0
12 2 6 4

0

0.79 10 /

1.000272643 1.2288 10 0.03555 10 ( in nm)

n n P T
n λ λ λ

−

− − − −

≈ + ×

= + × + ×
 (4.32) 

The troposphere contains layers of turbulent air with variations in density and 
temperature. Mechanical energy, injected on large scales by convection and wind, is 
transferred to smaller and smaller scales by viscous forces until it is dissipated as heat. 
This results in a distribution of turbulent eddy sizes that is well described by 
Kolmogorov’s theory of turbulence (see Landau & Lifshitz, Fluid Mechanics).  
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Figure 4.2. Diffraction-limited MTF for a circular aperture. The horizontal axis refers to 
spatial frequency in units of D/λ. 
 

The propagation of electromagnetic radiation through a turbulent atmosphere has been 
studied in detail (eg. Tatarski 1967, see also the review by Roddier 1981), at least for the 
Kolmogorov spectrum. Essentially, the atmosphere acts as a phase screen, introducing 
random phase errors into the wavefront. Consider light propagating to Earth from a 
distant star and imagine that the turbulence is confined to a single thin layer, of thickness 

hδ , at a height h  above the telescope. The distance from the telescope to this layer, 
along the line of sight, is secz h ς= , where ζ  is the zenith angle of the star. The 
complex amplitude of the radiation field at the bottom of the layer can be written as 

 ( )( , ) exp ( , )z i zφΦ =x x  (4.33) 
 
where x  represents two-dimensional coordinates in the plane perpendicular to the line of 
sight and the amplitude has been normalized to unity at the top of the layer. For 
astronomical observations at moderate zenith angles, ( , ) 1zφ <<x  and so we may write 
 
 ( , ) 1 ( , )z i zφΦ ≈ +x x  (4.34) 
 

The propagation of light from the bottom of the layer to the telescope is well-described 
by Fresnel diffraction. Accordingly, the complex amplitude at the detector is given by 
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2

2

1( ) ( ,0) ( , ) exp

11 ( , ) exp

xz i
i z z

xz i
z z

π
λ λ

φ π
λ λ

 
Φ ≡ Φ = Φ ∗  

 

 
= + ∗  

 

x x x

x
 (4.35) 

 

where ‘∗ ’ denotes convolution.  

 
The real part of the second term on the right-hand side of (4.35) 
 

 
21( ) ( , ) cos xz

z z
χ φ π

λ λ
 

= ∗  
 

x x  (4.36) 

 
describes fluctuations in the logarithm of the amplitude ( , )zΦ x . The imaginary part 
 

 
21( ) ( , ) sin xz

z z
ϕ φ π

λ λ
 

= ∗  
 

x x  (4.37) 

 
describes fluctuations in the phase.  
 

These fluctuations vary on a timescale that is typically on the order of a few milliseconds 
and are essentially random in nature. Therefore, we can describe only statistical 
properties of these fluctuations. The covariance of two random variables f  and g  is 
defined by 

 fg fg f g= −C  (4.38) 
 

Extending this idea to fluctuations of the same function but at different positions, one 
defines spatial covariance functions 

 

 
( ) ( ) ( )

( ) ( ) ( )
χ

ϕ

χ χ

ϕ ϕ

= +

= +

r x x r

r x x r

C
C

 (4.39) 

 
where the brackets indicate a spatial average over the variable x . In these the second 
term on the right-hand side of (4.38) is missing because the mean values of the 
fluctuations are zero. Even though the phase and amplitude fluctuations vary randomly, 
these statistical averages are well defined and suffice to characterize the effects of the 
turbulence. 
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According to the Weiner-Kinchine theorem, the Fourier transforms of the covariance 
functions are the power spectra ( )Wχ k  and ( )Wϕ k  defined by 

 
2

2

( ) ( )

( ) ( )

W

W

χ

ϕ

χ

ϕ
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To compute these, take the Fourier transform of (4.36) and use the convolution theorem 
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Putting this result in (4.40) gives 
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where 
2

( ) ( )Wφ φ=k k�  is the power spectrum of the complex phase fluctuations at the 

bottom of the turbulence layer. Our next task is to determine the form of ( )Wφ k , the 
power spectrum of phase fluctuations produced by atmospheric turbulence. One begins 
by assuming that the statistical properties of the atmospheric turbulence do not depend on 
the orientation perpendicular to the line of sight. Therefore the power spectrum can 
depend only on the magnitude κ  of the spatial frequency k . To find the form of the 
power spectrum, we need a theory of turbulence.  

4.3.1 Atmospheric turbulence 
Over a wide range of scales, atmospheric turbulence is well-described by the 
Kolmogorov turbulence spectrum. In Kolmogorov’s theory, large-scale turbulent cells 
are produced by the action of wind. The largest scale of such cells is called the outer 
scale of turbulence, oL . The air flow within these cells is itself unstable, producing 
smaller cells. These in turn produce cells that are smaller still and the process continues 
until viscous damping becomes important. At this point energy is dissipated as heat. The 
size of the smallest turbulent cells is call the inner scale iL . 
 
Kolmogorov turbulence therefore involves a cascade of energy from large scales to small 
scales. At any scale, the rate at which energy enters this scale, per unit mass, is the same 
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as the rate at which energy leaves this scale. This rate, denoted by ε , is therefore 
independent of scale. Now, associated with every cell, we have a typical length l , and a 
typical air velocity υ . A characteristic time for the cell is / lτ υ= . 
 
The energy per unit mass is  
 2ε υ∼  (4.43) 
and the energy dissipation rate is  
 3/ / lε τ υ∼ ∼ε  (4.44) 
 
Therefore, the typical velocity in a cell of size l  is 
 
 ( )2/3 2 /3l lυ ∼ ∼ε  (4.45) 
since ε  is constant. 
 
Now, consider the energy per unit mass contained within turbulent cells having scales in 
some finite range, say l  to 2 l . From (4.43) and (4.45) this must be proportional to 2/3l . 
This energy can also be found by integrating the power spectrum of the turbulent energy 

( )EW κ , over the corresponding range of spatial frequencies, from 1/ lκ ∼  to / 2κ . 
Therefore we must have 

 2 2 /3 2/3

/ 2

( )EW d l
κ

κ

κ κ κ κ −
∫ ∼ ∼  (4.46) 

which can only be true if 
 11/3( )EW κ κ −

∼  (4.47) 
 
One can now argue that the power spectrum of other physical quantities such as the 
temperature and ultimately the index of refraction must have the same form. Therefore, 
we can write the power spectrum of index of refraction fluctuations as  
 
 2 11/3( ) 0.033N NW Cκ κ −=  (4.48) 
 
where the proportionality constant 20.033 NC , a measure of the strength of the turbulence, 
is a function of height. The parameter 2

NC  is called the structure constant of index of 
refraction fluctuations. The factor of 0.033 appears because 2

NC  is actually defined as the 
coefficient of the structure function (defined in 4.3.4) of index of refraction fluctuations. 
 
The two-dimensional phase power spectrum can now be obtained from the three-
dimensional index of refraction power spectrum. One multiplies by 2(2 / )π λ , to obtain 
phase from index of refraction, and integrates over the z variable (see Roddier 1981, 
Section 3). The result is 
 
 2 11/3 2( , ) 0.38sec ( )NW z C h hφ ζ λ κ δ− −=k  (4.49) 
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Generally, turbulence occurs over the entire lower atmosphere, extending from the 
surface to a height of tens of kilometers. We can treat this general case by dividing the 
atmosphere into many (an infinite number) of thin layers. Each layer contributes a small 
amount to the phase fluctuations, and these contributions add linearly. The total effect is 
found by integrating equations (4.42) over h . The result is 
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 (4.50) 

 
In practice, the argument of the trigononometric functions in the integrals is small and we 
may make the near-field approximation. This gives 
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4.3.2 Scintillation 
The first equation in (4.51) describes the power spectrum of log-amplitude fluctuations 
that give rise to scintillation. The variance of these fluctuations is given by 
 
 2 2( ) (0)χ χσ χ= =x C  (4.52) 
 
Since intensity is the squared modulus of the amplitude, the variance of intensity 
fluctuations seen by a telescope is 
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To obtain the last line we have used the fact that the covariance function is the inverse 
Fourier transform of the power spectrum, so its value at the origin is equal to the integral 
of the power spectrum. The weighting function ( )G κ  accounts for the fact that the 
telescope aperture averages over spatial frequencies.  Fluctuations of spatial frequency κ  
have a spatial oscillation scale of order 1κ − . If this is much smaller than the diameter of 
the telescope aperture, the fluctuation will be effectively averaged out. Therefore, we 
expect that ( )G κ  will drop to zero at a frequency 1/ Dκ ≈  effectively cutting off the 
integral. In fact, this weighting function is the square of the Fourier transform of the 
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telescope pupil function, defined to have unit value inside the aperture and be zero 
outside the aperture. 

 
2

2 2( ) ( ) iG P e d xπ− ⋅= ∫
k xk x  (4.54) 

 
For distances 2 /z D λ<< , the argument of the trigonometric functions in the integrals of 
(4.50) is small, so a small angle approximation can be used. This is called the near field 
limit. From(4.50) and (4.53) we see that, in the near field, the variance of intensity 
fluctuations increases with distance from the turbulent layer in proportion to 2z . 
Therefore the RMS intensity fluctuations increase linearly with distance. Scintillation 
increases in proportion to the distance to the turbulent layer. It is also evident that 
scintillation decreases as the aperture size of the telescope increases, because of the 
cutoff, at frequency 1/ Dκ ≈  due to averaging.  

4.3.3 Seeing 
The third equation in (4.50) describes fluctuations in phase. Phase errors correspond to a 
random tilt and distortion of the wavefront. A tilt of the wavefront results in a transverse 
displacement of the image at the focal plane. A distortion of the wavefront results in a 
blurring of the image of a star. There is a characteristic scale 0r  (to be defined more 
precisely in the next section) that describes the wavefront distortion With small-aperture 
telescopes ( 0D r<< ), wavefront tilt is the dominant effect and the image is sharp, having 
size / Dλ∼ , but dances erratically with a timescale of a fraction of a second. In long 
exposure images, the random motions of the image produce a smooth Gaussian-like PSF 
with characteristic size 0/ rλ∼ . 
 
With large telescopes ( 0D r>> ), wavefront distortion is the dominant effect and the 
image is stable but is composed of a large number of “speckles”, each with size / Dλ∼ , 
The overall size of the envelope of speckles is 0/ rλ∼ . In long exposure images, the 
random motions of the speckles produce a smooth Gaussian-like PSF with characteristic 
size 0/ rλ∼ .  
 
At visible wavelengths, 0 10r ∼ cm, so atmospheric seeing is the principle factor that 
determines the resolution of ground-based telescopes. Recently, it has become possible to 
correct the phase errors, at least in part and at near-infrared wavelengths, by means of 
Adaptive Optics systems, discussed in 4.4. 

4.3.4 Atmospheric structure function 
Although the wavefront phase errors produced by the atmosphere are random, and time-
varying, their statistical properties are well-defined and related to the physical properties 
of the turbulence. We have already encountered the phase covariance function 
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 ( ) ( ) ( )ϕ ϕ ϕ= +r x x rC . (4.55) 

 

Another useful quantity is the phase structure function to be the ensemble average of the 
square of the difference between the phase errors at two points  

 
 ( )2( ) ( ) ( )ϕ ϕ ϕ= − +r x x rD  (4.56) 

 

It is easy to see that these two functions are related. By expanding the square in (4.56), 
and using the linearity of the ensemble average, we find 
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where  

 2(0) ( )ϕ ϕ= xC  (4.58) 

is the variance of phase fluctuations at any point on the wavefront. It is usually 
reasonable to assume that the atmosphere is sufficiently homogeneous that the phase 
variance is independent of position, at least over distances comparable to the diameters of 
telescopes. It is also reasonable to assume that the phase fluctuations are isotropic, that is 
to say the covariance and structure functions depend only on the distance between the 
two points, and not on the orientation. We then have 
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Let us now compute the structure function for atmospheric turbulence. Using (4.57) we 
write the structure function in terms of the covariance function and then use the fact that 
the covariance function is the (inverse) Fourier transform of the power spectrum given in 
(4.50). Recalling that for circular symmetry the Fourier transform becomes a Hankel 
transform (see (4.21)), and using the near-field approximation, we find. 
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The integral over spatial frequency can be done analytically. To three digit accuracy the 
result is 
 ( )5/3

0( ) 6.88 /r r rϕ =D  (4.61) 
where 
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This result was first obtained in 1966 by David Fried. The parameter 0r  has therefore 
come to be known as the Fried parameter. In deriving it we used the near-field 
approximation, which is generally quite good for astronomical observations. One can 
easily show that the result holds for the combined structure function 
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 (4.63) 

 
without any approximation. The near field approximation is therefore equivalent to the 
statement ( ) ( )r rϕ χ>>D D . 

From (4.56) and (4.61) it can be seen that the RMS phase difference between two points 
on the wavefront grows with separation in proportion to 5/ 6r  and has the value 2.62 
radians when 0r r= . Thus 0r  represents a characteristic scale above which the phase 
fluctuations are large enough to cause significant blurring of the image. 

 

From equation (4.62) it is evident that the Fried parameter depends on wavelength 

 6 /5
0r λ∝ . (4.64) 

At typical telescope sites, 0 0.1mr ≈ at a wavelength 0.5nmλ =  and increases to about 
0.5 m at a wavelength of 2 um. 

4.3.5 Long-exposure MTF and PSF 
Lets now apply the tools that we have learned to estimate the MTF and PSF for long-
exposure images taken through the atmosphere. As in section 4.2.1 we write the 
amplitude of the electromagnetic wave in the entrance pupil as 
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 ( )

0( ) ( / )ia a e r Dϕ= Πrr  (4.65) 
 
Now, from (4.29), the instantaneous MTF is just the convolution 
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The long-exposure MTF is obtained by averaging, 

 
 [ ] ( ) ( )( ) ( )2 2

0( ) / /iM a e D D dϕ ϕ− −= Π Π −∫
x r xr x r x x  (4.67) 

 

By virtue of the central limit theorem, the individual fluctuations ( )φ x  have a distribution 
function that is essentially Gaussian with zero mean. We may therefore make use of the 
following relation, valid for any Gaussian random variable x, 
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Thus, 
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and (4.67) becomes 
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where 0 ( )M r  is the diffraction-limited MTF (4.31) shown in Figure 4.2. Substituting 
Fried’s relation  gives 
 
 

5 / 3
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From this we see that, for 0r D� , atmospheric seeing introduces an attenuation factor 
into the MTF that effectively reduces the resolution to that of a diffraction-limited 
telescope of approximate diameter 0r . 

The PSF can now be determined as it is proportional to the Fourier transform of the MTF. 
There is no exact analytic form for this, but we can easily get an approximate solution. 
The MTF (4.71) has a form very similar to a Gaussian function of r, but with a 5/3 power 
instead of the normal square. Since the Fourier transform of a Gaussian is also a 
Gaussian, we conclude that the PSF will have an approximately Gaussian form, with a 
characteristic angular width of order 0/ rθ λ� . Since 6/5

0r λ∝ , 1/5θ λ−∝  and the image 
quality improves as the wavelength increases (contrary to the result for a diffraction 
limited telescope). At a sufficiently large wavelength 0r D�  and the telescope will 
become diffraction limited. 

 

4.3.6 Image quality 
The sharpest images that a telescope can produce occur when the resolution is limited 
only by diffraction. In practice, the resolution of most telescopes is limited by 
aberrations, atmospheric seeing, etc. There are a number of ways of expressing the 
resolution of a telescope, both in an absolute sense and relative to the diffraction limit. 
 
One could of course give a complete description of the PSF or MTF of the telescope, but 
more often a single number is desired which describes the image quality. A commonly 
used parameter is the full-width at half maximum (FWHM) of the PSF. This is the 
effective diameter of the isophote whose intensity is half that of the central intensity of 
the PSF, and corresponds to our intuitive notion of the “width” of the PSF. The FWHM is 
often used to describe the seeing at a telescope site, since the seeing is usually the 
primary factor determining the image quality for ground-based optical telescopes. 
 
Another parameter is the 50% encircled-energy diameter (EED). This is the diameter of 
the smallest circle that contains 50% of the light. Similarly, one can define the 75% EED, 
the 90% EED, etc. 
 
A very useful parameter describing images that are nearly diffraction limited is the Strehl 
ratio (S). It is defined as the ratio of the central intensity of the PSF to the central 
intensity of a perfect diffraction-limited PSF (at the same wavelength). Clearly 1S ≤ . 

4.3.7 Zernike functions 
A useful way of describing wavefront aberrations is by an expansion in terms of 
orthogonal functions. For circular apertures, the Zernike polynomials are commonly used 
as they are defined within a circle and are closely related to the polynomial expansion of 
Hamilton and the Seidel aberrations. The Zernike functions are defined as 
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These functions are defined on the unit disk ( 1r ≤ ) and are orthogonal in the sense that 
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The parameter n is called the radial order and m the azimuthal order. 
 
A listing and interactive display of the 36 lowest-order Zernike functions can be found 
on-line at http://wyant.opt-sci.arizona.edu/zernikes/zernikes.htm. The first 12 Zernike 
polynomials are listed in Table 4.1. The image effects of the first 11 Zernike functions 
are described in Table 4.2. 
 

Table 4.1 Low-order Zernike polynomials 

 
n\m 0 1 2 3 4 5 
0 1      
1  r      
2 22 1r −   2r     
3  33 2r r−   3r    
4 4 26 6 1r r− +   4 24 3r r−   4r   
5  5 310 12 3r r r− +   5 35 4r r−  5r  
 
 

Table 4.2 Low-order Zernike functions 

 

(n,m) Name Effect 

(0,0)  Piston None, phase change only 

(1, 1)±  Tip-tilt Shift of image position 
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(2,0) Defocus Focus shift 

(2, 2)±  Astigmatism 3rd-order astigmatism 

(3, 1)±  Lateral coma 3rd-order coma 

(3, 3)±  Triangular coma Aberration with 3-fold symmetry 

(4,0)  Spherical aberration 3rd-order spherical aberration 

 

4.4 Adaptive optics 
It has recently become possible to largely correct the phase errors introduced by the 
atmosphere, at least at near-infrared wavelengths. This is accomplished by inserting a 
deformable mirror into the beam, at or near a pupil, prior to the final focus. The surface 
shape of this mirror can be altered rapidly by means of electrical signals. A wavefront 
sensor determines the residual phase error by analyzing light from a reference star, and a 
feedback system drives the deformable mirror in such a way as to cancel the phase error. 
This technique is called adaptive optics (AO) and is now used at many major optical 
observatories (Figure 4.3). 
 

 
Figure 4.3 A binary star imaged under normal atmospheric conditions (left), is 
unresolved. With adaptive optics, the double star is clearly resolved (center). Image 
processing further improves the image (right). Figure courtesy of the Canada-France-
Hawaii Telescope Corp. 
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4.4.1 Adaptive optics systems 
A typical AO system has at least the following components: a collimator, tip-tilt mirror, 
deformable mirror, camera, detector, wavefront sensor and control system. The 
collimator receives diverging light from a focus, and forms a parallel beam. Located in 
this beam is a plane mirror that can pivot rapidly about two orthogonal axes. This tip-tilt 
mirror removes wavefront tilt errors (corresponding to the 1

1Z ±  Zernike terms) that would 
be difficult for the deformable mirror to correct. Following the tip-tilt mirror, the light 
strikes a nearly-plane deformable mirror (Figure 4.4) This mirror is usually located at a 
pupil position (image of the primary mirror), or at a position near it that is optically 
conjugate to (ie. an image of) the main atmospheric turbulence layer. The surface of this 
mirror is divided into zones called subapertures, each of which can be deflect a distance 
of up to several wavelengths by application of an electrical voltage. After reflection from 
the deformable mirror, the light passes through a beam splitter and then to a camera 
mirror or lens which produces an image on the detector. A small portion of the light is 
reflected by the beam splitter to a wavefront sensor. The function of this device is to 
analyze the residual wavefront errors (after correction by the deformable mirror) and to 
generate an error signal which is amplified and applied to the deformable mirror in a null-
seeking feedback loop. Practical systems include a number of other elements such a 
atmospheric dispersion correctors, filters, folding mirrors, etc and are quite complex 
(Figure 4.5). 
 
 

 
 

Figure 4.4 A commercially-available deformable mirror 
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Figure 4.5 Optical layout of an adaptive optics system used by the Keck telescopes. 

4.4.2 Wavefront-sensors 
Presently, two types of wavefront sensors are in common use, Shack-Hartman sensors 
and curvature sensors. The Shack-Hartman sensor employs an array of microlenses, 
located at a pupil, to form multiple images of a star on a CCD. Each microlens produces a 
single image of the reference star on the CCD (Figure 4.6). The position of the centroid 
of this image is directly related to the slope of the wavefront at the location of the 
microlens. By measuring the centroids of the images produced by all the microlenses, one 
obtains a map of the wavefront slopes (derivatives of the wavefront phase error) at all 
locations in the pupil. The wavefront error at any point may then be determined by 
integration. 
 
The curvature sensor makes use of the fact that the intensity distribution in a defocused 
star image is proportional to the local mean curvature of the wavefront phase error 

2( ) ( )I φ∝∇x x . In a typical curvature sensor, two defocuses images of the reference star 
are formed on a CCD detector, one a certain distance before the focus and the other the 



ASTRONOMICAL AND ASTROPHYSICAL MEASUREMENTS 

98 

same distance behind the focus. The difference between this images is calculated from 
which a map of the wavefront curvature over the pupil is determined. Boundary 
conditions are obtained from the positions of the edge of the image, and the map is 
integrated to obtain a map of the wavefront error. 
 
 

 
 

Figure 4.6 Principle of the Shack-Hartman wavefront sensor. The illustration shows how 
a single microlens produces an image of the reference star on a CCD detector. The 
position of the image gives the local mean wavefront slope. 

4.4.3 Adaptive optics performance 
In order for the AO system to provide good correction of the wavefront, the size of the 
subapertures should not be much larger than the Fried parameter 0r , otherwise the 
atmospheric phase errors will have significant power on scales smaller than the 
subaperture size and will not be fully corrected. Of course, the resolution of the 
wavefront sensor must be matched to the subaperture size of the deformable mirror. It is 
also necessary to collect sufficient photons from the reference star, over an area in the 
pupil of roughly 2

0r , in order to accurately determine the phase error.  
 
Since 6/5

0r λ∝ , there will be a wavelength below which 0r  becomes smaller than the 
subaperture size and the AO performance becomes severely degraded. As 0r  decreases, 
fewer photons are detected and the integration time must also be shorter (because for a 
given wind speed v, the timescale for significant phase change is 0 /r v ). For these reasons, 
adaptive optics works best in the infrared, typically J, H and K bands, and gives little if 
any performance gain in the optical with present technology. 
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Another problem occurs if the object of interest is not sufficiently close to a suitably 
bright reference star. Then, the light arriving from the object traces a different path 
through the atmosphere than does the light from the reference star and the phase errors 
calculated for the star are no longer suitable for the object. If the turbulence arises at a 
height h above the telescope, and the deformable mirror is located at a pupil (conjugate to 
the primary mirror), the isoplanatic angle (the angle within which the phase differences 
are small) is  
 0 /iso r hθ = . (4.75) 
 
Thus, good adaptive optics performance can only be expected within an angle isoθ  of the 
reference star. This situation can be improved by locating the deformable mirror 
conjugate to the turbulence layer, but if the turbulence is distributed over a range of 
altitudes this will be less effective. A better solution is to have several deformable 
mirrors, each conjugate to a different altitude. A corresponding number of reference stars 
and wavefront sensors are also required, in order to assign the appropriate wavefront 
correction to each mirror. This technique is called multi-conjugate adaptive optics 
(MCAO) or atmospheric tomography. It is a subject of current research and has not yet 
been demonstrated. 
 
A lack of suitable reference stars has motivated the development of laser beacons. A 
powerful laser is used to illuminate a region of the atmosphere creating an artificial star. 
Light scattered back from this region is used as a reference to determine the atmospheric 
phase error. Either Rayleigh scattering or flourescence of the atmospheric sodium layer 
can be used. The latter is most effective as the light returned from the 90km high sodium 
layer is more nearly parallel to the light from distant astronomical sources. Laser beacons 
offer greater flexibility, but they have not achieved as high a degree of performance as 
AO systems employing natural guide stars. 
 
Fig shows an image from the Gemini telescope with and without adaptive optics. The 
gain in resolution and sensitivity provided by AO is very impressive. An interesting 
animation showing a stellar image with no correction, tip-tilt correction only, and then 
full high-order adaptive optics correction, can be found online at 
http://www.aoainc.com/technologies/adaptiveandmicrooptics/aos.html. 
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Figure 4.7 Comparison of an image in natural atmospheric seeing (left, 0.8” FWHM) and 
the same field imaged with an adaptive optics system (right). Both images were obtained 
with the Gemini North 8-meter telescope. 

 

 
Figure 4.8 Animation showing the effect of an adaptive optics system. The sequence 
shows 100 ms images of the 8th magnitude star Omega-Cass, taken with the 3.5m Max-
Planck telescope at Calar Alto.  The first 100 images show the the star image in natural 
seeing, the next 100 with tip-tilt correction, and the last 100 with full adaptive-optics 
correction.  

4.5 Interferometry 
An interferometer is a telescope that employs separate apertures, but combines the 
radiation received be each in a way that preserves the phase information. An early 
example is the optical interferometer used by Michelson to measure stellar diameters. 
Michelson attached two small auxiliary mirrors to the 1.5-metre telescope at Mt. Wilson 
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and used them to direct light from a star to the primary mirror that brought the light to a 
common focus. For a small separation between the mirrors, interference fringes were 
observed. These disappeared at sufficiently large separation for a number of nearby stars 
of large angular diameter. From a graph of fringe visibility vs mirror separation, 
Michelson was able to infer the stellar diameter. 

 
 

    
 

Figure 4.9. Principle of the Michelson stellar interferometer. 
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Figure 4.10. Original Michelson interferometer on the Mount Wilson 100-inch Hooker 
telescope. 

 
Interferometry was popularized by radio astronomers, who were at a disadvantage 
compared to optical astronomers when in came to resolution. Recall that the angular size 
of the PSF of a telescope of diameter D is approximately / Dλ . Because radio waves 
have wavelength typically six orders of magnitude larger than optical radiation, the 
resolution of single-dish radio telescopes is relatively poor. To overcome this limitation, 
radio astronomers combine the signals from separate antennae whose separation can be 
much larger than their individual diameters.  
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Figure 4.11. Schematic diagram of a two-element interferometer. 

 
In radio interferometry, the signals (specifically, the intermediate-frequency signals 
produced by mixing a local oscillator signal with the radio-frequency signal received by 
the antenna) from two antenna are multiplied together. The result is an oscillating signal 
whose phase is proportional to the difference in optical path length from an incoming 
plane wave to the two antennae. As the Earth rotates, this difference varies and the signal 
oscillates.  
 
Let the amplitude of the radiation field, measured in a plane perpendicular to the 
direction of propagation, be 1( , )a tq  and 2( , )a t τ+q . Here τ  represents the time 
difference between the two signals reaching the correlator, due to the different 
propagation distances to the two antenna and internal delays in the transmission of the 
electrical signal to the correlator. The output of the correlator is a signal proportional to 
the autocorrelation function  
 
 *

1 2 1 2( , , ) ( , ) ( , )a t a tτ τΓ = +q q q q , (4.76) 
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also called the mutual coherence function in optics. Here the bracket denote a time 
average that is long compared to the reciprocal of the frequency of the radiation, but short 
compared to variations in τ  caused by the Earth’s rotation. For astrophysical sources 
(which are incoherent and very distant) the mutual coherence function depends only on 
the coordinate difference 1 2 λ− =q q u , where ( , )u υ=u  is the vector corresponding to 
the projected baseline (the line joining the two antenna, projected onto a plane 
perpendicular to the direction of the source) divided by the wavelength. Therefore, 
 
 *

1 2 1 1( , , ) ( , ) ( , ) ( , )a t a tτ τ λ τΓ = Γ = + +q q u q q u  (4.77) 
 
where the brackets now include a spatial average. This function has a sinusoidal 
dependence on τ , which corresponds to fringes, just as for the Michaelson 
interferometer. The fringe amplitude is ( ) ( ,0)Γ ≡ Γu u . According to the Weiner-
Khinchin theorem, the Fourier transform of an autocorrelation function is the Power 
spectrum of the signal. In other words, the spatial Fourier transform of ( )Γ u  is 
proportional to the squared modulus of ( )a x� , the Fourier transform of the amplitude in 
the pupil. From Fraunhoffer diffraction theory, the amplitude in the pupil is the Fourier 
transform of the angular distribution of the amplitude distribution in the source. 
Therefore, the Fourier transform of ( )Γ u  is proportional to the intensity distribution in 
the source 
 
 2 2( ) ( ) iI e d uπ− ⋅∝ Γ∫

u xx u . (4.78) 
 
Each pair of antennae gives a measure of ( )Γ u  at a different point in the u-v plane. Now, 
as the Earth rotates, the projected baseline changes because the antennae are fixed to the 
Earth. Thus, each antenna pair sweeps out a curve in the u-v plane, along which 
measurements of ( )Γ u  are recorded. After a sufficiently long time interval, we know 

( )Γ u  at enough points in the u-v plane that the image of the source can be reconstructed. 
This technique is called aperture synthesis and is the principle of operation of all modern 
radio interferometers, such as the Very Large Array (VLA) in New Mexico (Figure 4.12). 
 
For an array of N antennae, the number of baselines is ( 1) / 2N N − , so the quality of the 
reconstructed image increases rapidly with the number of antennae. The resolution of the 
image is determined by the length of the longest baselines maxD  and is of order 

/ maxDθ λ� . Long-baseline interferometers, like the VLA, achieve a resolution 
comparable to that of the best optical telescopes (Figure 4.13). In very-long-baseline 
interferometry (VLBI), the separation between antennae is comparable to the radius of 
the Earth, so a resolution of a few milli-arcseconds or better can be achieved. 
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Figure 4.12 The Very Large Array (left) and a closeup of the central region (right). The 
array, located near Socorro, New Mexico, has 27 antenna, each 30 metres in diameter, 
deployed along a Y-shaped track. The array has four configurations (A, B, C and D) 
corresponding to increasing antenna separations and resolution. 

 

 
 

Figure 4.13 The radio galaxy 3C31, imaged by the VLA. The motion of this galaxy 
within a cluster causes its jets to be swept back by the pressure of the intergalactic 
medium.
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Exercises 
 
4.1 The seeing at the Canada-France-Hawaii Telescope is typically 0.8” FWHM in 

the V band. At approximately what wavelengths would you expect the 3.6-metre 
telescope to give diffraction-limited images? 

4.2 Why do you think that the wavefront sensor (and beamsplitter) in an adaptive 
optics system is placed after the deformable mirror, rather than before it? 

4.3 The Terrestrial Planet Finder (TPF) is a proposed space telescope that would be 
able to image an Earth-like planets orbiting solar type.  One concept for TPF is an 
optical interferometer consisting of four diffraction-limited telescopes operating 
in the 3-30 um wavelength range with separations between telescopes in the range 
25-1000 m. Estimate the maximum resolution (the PSF FWHM) that could be 
achieved by TPF. How does this compare with the angular size of the Earth seen 
at a distance of 10 pc? How does it compare with the angular separation between 
the Earth and Sun as seen from the same distance? 

4.4 Prove (4.68). 

4.5 By numerically evaluating the Hankel Transform of the MTF (4.71), and 
assuming that 0r D� , compute the atmospheric PSF. Plot the logarithm of 
intensity vs radius. How does it compare with a Gaussian function (which is a 
parabola in this type of plot)? 
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5 Spectroscopy 
The remarkable progress in astrophysics over the last century owes much to the 
development of spectroscopic techniques. Spectra can provide a wealth of information 
about the physical conditions, chemical composition, and state of motion of a source. 
Because the flux or intensity must be measured as a function of wavelength, more 
photons are required than for simple imaging. Spectroscopy is therefore inherently more 
difficult than imaging, particularly for faint sources. Increasingly-sophisticated and 
sensitive instruments have been developed to maximize the efficiency of spectroscopic 
observations. This chapter is primarily concerned with optical spectroscopy, although 
much of it is applicable to other wavelengths, particularly the infrared and ultraviolet. 
Spectroscopic techniques used for coherent detection (radio astronomy) are generally 
rather different and will be discussed elsewhere. 

5.1 Spectrographs 
In spectroscopy, we seek to determine the functions , , , orF F I Iν λ ν λ  over some range of 
frequency or wavelength. Of particular interest is the spectral resolution, ( orν λ∆ ∆ ) 
which describes the smallest frequency or wavelength interval over which differences in 
the flux or intensity can be discerned. For example, two spectral lines separated by a 
wavelength interval less than λ∆  are not individually distinguished but instead appear 
blended. Closely related is the spectral resolving power 
 

 R λ ν
λ ν

= =
∆ ∆

. (5.1) 

 
Optical spectroscopy can be divided into low ( 100)R < , medium (100 5000)R< < and 
high ( 5000)R >  resolution categories, each requiring rather different instrumentation and 
techniques. 
 
The basic instrument for optical spectroscopy is the grating spectrograph, illustrated in 
Figure 5.1. A spectrograph has five essential components: a slit, collimator, diffraction 
grating, camera and detector. The typical layout is illustrated in Figure 5.2. The slit, 
located at the telescope focus, allows light from a star or galaxy to enter the spectrograph 
while blocking light from other objects and the night sky. Light passing through the slit 
strikes the collimator that focuses it into a parallel beam. This light then strikes the 
diffraction grating that disperses it. Different wavelengths are diffracted by different 
angles, so the diffracted beam has a wavelength-dependent angular spread in the direction 
perpendicular to the slit. The light is then re-imaged onto a detector by means of a 
camera that may consist of mirrors, lenses or both. Because of the angular dispersion 
created by the grating, different wavelengths focus to different points on the detector, so 
the spectrum of an object is spread along a line on the detector, perpendicular to the 
direction of the slit. In other words, a spectrograph is a kind of imaging system that 
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produces an image of the slit on the detector. However, the position of this image is 
wavelength dependent. 
 

 
 

Figure 5.1 The Boller and Chivens CCD Spectrograph (the white structure) used on the 
MDM Observatory 2.4-m and 1.3-m telescopes. It is a conventional optical grating 
spectrograph operating in the 3200 - 9500 Å region.  Seven gratings are available 
providing spectral resolutions between 550 and 9100.   The slit width is continuously 
adjustable between 0.5 and 13 arcsec. The detector is a Loral 1200 × 800 pixel CCD (the 
gold coloured cylinder). Lamps mounted above the spectrograph are used for wavelength 
calibration and flat fielding.  At the lowest dispersion, the peak total system quantum 
efficiency is about 19% at 5200 Å. An intensified camera records the image provided by 
the telescope on the polished entrance slit jaws and for an integration time of a few 
seconds, point sources with magnitudes just below the POSS limit can be seen over most 
of the 5 arcmin field of view at the 2.4-m telescope. Low resolution spectra of objects as 
faint as 20.5 mag can be obtained at the 2.4-m telescope. 
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Figure 5.2 Optical layout of a typical grating spectrograph. Light from the telescope 
enters from the upper right on its way to a focus, located at the position of the slit. 

5.1.1 Diffraction gratings 
A reflective diffraction grating is a mirror on which is ruled a series of parallel grooves 
with a constant spacing d  comparable to the wavelength of light λ . Transmission 
gratings are also available, which transmit light instead of reflecting it. The groove 
spacing is usually specified in terms of the number of lines per mm, which can range 
from a hundred to several thousand. The fundamental relation which describes the 
behaviour of the grating is the grating equation 
 
 sin sin /n dθ θ λ′+ =  (5.2) 
 
where θ  and θ ′  are the angles of incidence and reflection and n is an integer called the 
order, 0, 1, 2,n = ± ± �  This equation is easily derived by requiring that the optical path 
length for rays diffracted from adjacent grooves be a multiple (n) of λ  for constructive 
interference.  
 
The efficiency of a diffraction grating (the fraction of light of a given wavelength 
diffracted in a given order) varies with wavelength. The wavelength, and order, of peak 
efficiency depends on the angle of the surfaces of the grooves, called the blaze angle. 
Most spectrographs have a selection of gratings from which to choose, with various line 
spacing and blaze wavelengths (wavelengths of peak efficiency). 
 

Components: 
 

1. Folding mirror 
2. Slit 
3. Shutter 
4. Collimator 
5. Grating 
6. Schmidt corrector 
7. Camera mirror 
8. Folding mirror 
9. Detector 
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The wavelength range of the spectrum on the detector can be adjusted by rotating the 
grating. This changes the angle of incidence, and therefore the angle of diffraction of a 
particular wavelength. Most spectrographs have a mechanical control, manual or 
motorized, to allow the central wavelength (the wavelength imaged at the center of the 
detector) to be adjusted.  
 
Because n can take any integer value, diffraction gratings produce an infinite number of 
spectra, centered at different angles. For typical gratings, most of the light is diffracted 
into the first order, but the amount of light in second or higher orders can be significant. 
These higher-order spectra overlap the first-order spectrum which would cause problems 
if the wavelength range is unrestricted. For example, a wavelength of 400 nm in the 
second order appears at exactly the same angle (and position on the detector) as a 
wavelength of 800 nm in the first order spectrum. In order to eliminate contamination of 
the first-order spectrum by higher orders, blocking filters are used. For example, a filter 
which passes only wavelengths of 500 nm or more would allow an uncontaminated first-
order spectrum with a range of 500-1000 nm, a filter passing 300 nm and greater would 
allow a first-order spectrum with a range 300-600 nm, etc.  
 
Because of the limited wavelength range of high grating efficiency, and the need for 
blocking filters, two or more spectrograph configurations (gratings, filters, etc) are often 
required to cover the desired spectral range. 

5.1.2 Spectrograph parameters 
From the grating equation we can obtain the angular dispersion of the grating 
 

 cosd d
d n
λ θ
θ

′
=

′
 (5.3) 

 
Dividing by the focal length of the camera camf  gives the linear dispersion of the 
spectrograph (the wavelength change per unit length on the detector). 
 

 cos

cam

d d
dx nf
λ θ ′=  (5.4) 

 
 The cosine factor introduces a small nonlinearity into the mapping of wavelength onto 
position in on the detector. The actual position of wavelength λ  on the detector is usually 
determined empirically by reflecting light from spectral calibration lamps into the slit. 
The light produced by these lamps has numerous emission lines of know wavelengths. 
From the resulting calibration spectrum, the mapping between wavelength and position 
on the detector can be determined. 
 
Viewed as an imaging system, the spectrograph has a transverse magnification M which 
is the ratio of the width of the image of the slit, on the detector, to the actual width of the 
slit. It is given by the ratio of camera and collimator focal lengths 
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 /cam colM f f= . (5.5) 
 
If the slit is uniformly illuminated, each wavelength will give rise to an image of the slit, 
at a position on the detector determined by the grating equation and camera focal length. 
The light distribution along the image on the detector is therefore the one-dimensional 
convolution of the spectrum of the object with the image of the slit. If aberrations and 
diffraction effects in the spectrograph optics can be ignored, the spectrum is convolved 
by the function ( / )x wMΠ , where w is the physical slit width. This limits the resolution 
of the spectrograph. From (5.4), we find 
 

 

cos

cos .

cam

col

d wMdwM
dx nf
wd

nf

λ θλ

θ

′
∆ =

′
=

�

 (5.6) 

 
Normally, the slit is adjusted to have a width comparable to size of the image of a star or 
galaxy in the telescope focal plane. However, in some applications the slit width is made 
smaller, in order to improve the resolution. In that case much of the light from the object 
will be blocked by the slit and sensitivity will be reduced. To overcome this problem, one 
can use an image slicer. This is a device, placed before the slit, which rearranges the light 
from an object so that more of it can pass through the slit. Intensity must be conserved in 
this operation, so the resulting image is wider, occupying a greater length along the slit. 

5.1.3 Multi-object spectrographs 
With a conventional spectrograph, it is normally only possible to observe one object at a 
time (unless more than one object lies on the slit). This, coupled with the long exposure 
times required for faint objects, makes the acquisition of spectra for large samples of 
galaxies very difficult. Multi-object spectrographs are designed to take spectra of many 
objects simultaneously. There are several techniques for doing this. Fiber spectrographs, 
employ optical fibers to bring the light from the telescope focal plane to the spectrograph 
slit. The fibers are positioned in the focal plane at the positions of the objects, one fiber 
per object. In the most recent systems, this is done robotically, by reference to an image 
of the field. The other ends of the fibers are placed adjacent to each other along the slit. In 
this way, the spectra of several hundred galaxies may be obtained in a single exposure. 
 
A second technique uses multiple short slits, located at the positions of galaxies in the 
telescope focal plane (see Figure 5.4). One system, such as the MOS spectrograph at the 
Canada-France-Hawaii Telescope, uses a laser to cut slits, at the appropriate positions, in 
thin sheets of aluminum. These are then placed in position before each exposure. A new 
technique being investigated for the Next-Generation Space Telescope (NGST), uses a 
programmable micro-mirror array to deflect light from galaxies into the spectrograph. 
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Figure 5.3. The Hydra fiber positioner on the WIYN 3.5 meter telescope allows multi-
object spectroscopy of up to 100 objects over a 1 degree field. An optimized, bench 
mounted spectrograph provides low, moderate, or high dispersion spectra.  
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Figure 5.4. Mult-slit spectrum of a field of galaxies taken with the MOS spectrograph of 
the Italian Telescopio Nationale Galilieo. 

5.1.4 Slit-less spectroscopy 
Another way of obtaining spectra of many objects simultaneously is to use no slit at all. 
In a spectrograph designed for imaging, this can be done by simply removing the slit. 
Another way is to place a thin prism in front of the telescope aperture. The image at the 
telescope focal plane then becomes a collection of small spectra and no spectrograph is 
needed at all. Such objective prisms have been commonly used on small to moderate-
sized telescopes to obtain low-resolution spectra of stars for classification purposes. For 
practical reasons, objective prisms cannot be manufactured for large telescopes, but there 
is an alternative. A transmission grating placed in the converging beam before the focus 
of a telescope will serve the same purpose, but it also introduces optical aberrations and 
causes a large deflection of the images. However, a combination of a prism and a 
diffraction grating (called a grism, see Figure 5.6) cancels much of this deflection and 
reduces chromatic coma, producing images much like an objective prism. 
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Figure 5.5. Spectrum of the planetary nebula NGC 7662 obtained with an objective 
prism. The image is shown below, and a profile of the intensity, along the direction of 
dispersion, is shown above. 

 
There are several disadvantages to this approach. Because there is no slit, all of the light 
from the night sky passes through to the focal plane. Because of the photon noise from 
the sky slit-less spectroscopy is limited to relatively bright objects, at least from ground-
based telescopes. It is however competitive for space telescopes and has been used very 
effectively with the STIS spectrograph on the Hubble Space Telescope. 
 
 

 
Figure 5.6. Combination of a prism and a diffraction grating to remove chromatic coma. 
The grating can be ruled directly on the prism, which is then called a grism. 

5.1.5 Echelle spectrographs 
The problem of overlapping orders, discussed in 5.1.1, can be eliminated in an elegant 
manner. If a small prism is inserted in the beam, between the slit and the collimator, with 
angle of dispersion perpendicular to that of the diffraction grating, a cross dispersion of 
the spectrum will result. On the detector, the spectrum is not only dispersed in the usual 
direction, but there is also a small wavelength-dependent displacement in the 
perpendicular direction as a result of the prism. This cross dispersion breaks the 
degeneracy of different orders. For example, the wavelengths 800 nm and 400 nm in the 
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first and second orders, respectively, that would have appeared at the same position on 
the detector, are now separated in the perpendicular direction by a small but sufficient 
amount. Echelle gratings are designed to be used at high order (n ~ 30 for example). The 
spectra are highly dispersed so that the range of wavelengths in a single order 
corresponds to the difference in wavelengths between adjacent orders. In this way, an 
entire high-resolution spectrum can be fit into a rectangular format on the detector 
(Figure 5.7). 
 
Figures 5.8 -5.10 shows a CAD drawing of UVES, an echelle spectrograph at the 
Nasmyth focus of one of the 8-meter telescopes of the VLT. 
 

 
 

Figure 5.7 Echelle spectrum of a Th-Ar calibration lamp taken with the ARC 
spectrograph of the Apache Point 3.5-metre telescope. Each horizontal line corresponds 
to an order. 

 



ASTRONOMICAL AND ASTROPHYSICAL MEASUREMENTS 

116 

 
Figure 5.8  the UVES echelle spectrograph on a Nasmyth platform of the VLT. 

 
Figure 5.9 View of UVES with the cover removed. 
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Figure 5.10 UVES under construction in Garching. The echelle grating is visible in the 
foreground. 
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Exercises 
 
4.1 The seeing at the Canada-France-Hawaii Telescope is typically 0.8” FWHM in 

the V band. At approximately what wavelengths would you expect the 3.6-metre 
telescope to give diffraction-limited images? 

4.2 Why do you think that the wavefront sensor (and beamsplitter) in an adaptive 
optics system is placed after the deformable mirror, rather than before it? 

4.3 The Terrestrial Planet Finder (TPF) is a proposed space telescope that would be 
able to image an Earth-like planets orbiting solar type.  One concept for TPF is an 
optical interferometer consisting of four diffraction-limited telescopes operating 
in the 3-30 um wavelength range with separations between telescopes in the range 
25-1000 km. Estimate the maximum resolution (the PSF FWHM) that could be 
achieved by TPF. How does this compare with the angular size of the Earth seen 
at a distance of 10 pc? How does it compare with the angular separation between 
the Earth and Sun as seen from the same distance? 

4.4 Prove (4.68). 

4.5 By numerically evaluating the Hankel Transform of the MTF (4.71), and 
assuming that 0r D� , compute the atmospheric PSF. Plot the logarithm of 
intensity vs radius. How does it compare with a Gaussian function (which is a 
parabola in this type of plot)? 
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