

 θ (rad) = d/D = d/1AU = 0.53(2 π /360°) = 0.0093, hence d = 0.0093AU = 0.0093 x 1.496 x 10⁸ km = 1.392 x 10⁶ km or R_{sun} = 6.96 x 10⁵ km

Can we apply same principles to the stars?

e.g. α Cen (like Sun) D = 1.3 pc = 2.7 x 10⁵ AU; if R_{cen} = R_{sun} $\theta = 2R_{sun}/D = 0.0093 \text{ AU}/2.7 x 10^5 \text{ AU} = 3.3 x 10^{-8} \text{ rad} = 0.007 \text{ arcsec}$ (angular diameter of a dime 150 km away!)

Can we resolve this small angle with a telescope?

**

Stellar radii

Airy disk - diffraction pattern produced by a circular aperture (telescope mirror). First minimum usually taken as resolution limit of telescope Angular distance from centre to first ring $\theta = 1.22 \lambda/D$ λ is wavelength of observation, D diameter of telescope, θ in radians

Usually say 2 objects resolved if angular separation > λ/D

Stellar Radii

Example: resolution of human eye Pupil aperture = 1 cm; visible light λ = 500 nm = 5 x 10⁻⁵ cm (same units) $\theta_{diffraction} = \lambda/d = 5 x 10^{-5} cm / 1 cm$ = 5 x 10⁻⁵ rad = 0.003° = 10 arcsec

If aperture > 10 cm, then $\theta_{diffraction} = 1$ arcsec This is about the limit imposed by the atmosphere

To resolve α Cen: $\theta = 0.007 \text{ arcsec} = 3.3 \times 10^{-8} \text{ rad}$ $\theta > \theta_{\text{min}} = 1.22\lambda/D \rightarrow D > 1.22\lambda/\theta$ In visible light, $\lambda = 500 \text{ nm} = 5 \times 10^{-7} \text{ m}$ Therefore need D > 1.22 (5 x 10⁻⁷ m)/(3.3 x 10⁻⁸) = 18.6 m

Compare with world's largest telescope, Keck = 10 m

Ways to Measure Stellar Radii

- Method 1: Using Blackbody Laws:
- $L = 4\pi R^2 \sigma T^4$
- L is known if distance is known, T is obtained from radius R

Two examples \rightarrow

Size of Star Size of Earth's Orbit Size of Jupiter's Orbit

Example - Betelgeuse: $L = 4\pi R^2 \sigma T^4 \rightarrow$ $L/L_{sun} = (R/R_{sun})^2 (T/T_{sun})^4$ Sun: $M_V = +4.8$, Betel: $M_V = -5.5$ Thus $L_{\text{Betel}}/L_{\text{Sun}} = 13,200$ Sun: T = 5800K, Betel: T = 3500Kspectrum or colour, solve for Thus $R_{Betel}/R_{Sun} = (L_{Betel}/L_{Sun})^{1/2} x$ $(T_{\text{Betel}}/T_{\text{sun}})^{-2} = 320$ (better is 930 why?)

> Sirius B L/L_{Sun} = 0.03, T = 27,000 K Derive $R_{Sirius B} = 0.008 R_{sun}$ Which is about size of the Earth

There is a tremendous range of stellar radii spanning 7-8 orders of magnitude.

Ways to Measure Stellar Radii

Method 2: Using Eclipsing Binaries: Explanation

If orbital inclination i ~ 90°, orbital plane is close to line of sight and stars will partially or totally eclipse each other. Duration of eclipses, combined with orbital speeds, gives stellar radii.

Ways to Measure Stellar Radii

Method 2: Using Eclipsing Binaries: A Real Example

