Basic Properties of Stars

Stellar Masses and the Mass-Luminosity Relation

- Sections 13.5 and 13.6

Pages 322-332

Kepler's Third Law

$\mathrm{p}^{2} \propto \mathrm{a}^{3}$ - the square of the periods (p) of the planets are in proportion to the cube of their semi-major axes (a).

If p is in years and a in AU , the proportionality constant
$=1$, thus $\mathrm{p}^{2}=\mathrm{a}^{3}$
Generally
in sec $\rightarrow \rho^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)} a_{<}^{3}$ inm $_{\text {in kg }}$
Gravitational Constant
$=6.67 \times 10^{-11}$ Newton $\mathrm{m}^{2} / \mathrm{kg}^{2}$

Kepler's observation of planetary orbits based on Tycho Brahe's data

Application Kelper's 3rd Law

Mass of the Sun: $p^{2}=4 \pi^{2} a^{3} / G\left(M_{\text {sun }}+M_{\text {planet }}\right)$
$\mathrm{p}^{2}=4 \pi^{2} \mathrm{a}^{3} / \mathrm{GM}_{\text {sun }}$ if $\mathrm{M}_{\text {planet }} \ll \mathrm{M}_{\text {sun }}$
For Earth's orbit, $\mathrm{P}=1$ year $=365.2564 \mathrm{~d}=3.256 \times 10^{7} \mathrm{~s}$ $\mathrm{a}=1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$ $\rightarrow \mathrm{M}_{\text {sun }}=1.989 \times 10^{30} \mathrm{~kg}$ (if use orbit any other planet same result)

Is approximation $\mathrm{M}_{\text {earth }} \ll \mathrm{M}_{\text {sun }}$ valid?
Consider satellite orbit $\left(\mathbf{M}_{\text {satellite }} \ll \mathbf{M}_{\text {earth }}\right)$ eg Hubble Space Telescope
Altitude $559 \mathrm{~km}=6400+559$ from Earth' s centre, $\mathrm{a}=6.96 \times 10^{6} \mathrm{~m}$ Orbital $\mathrm{P}=97 \mathrm{~min}$, so $\mathrm{P}=5820 \mathrm{sec}$
$\mathrm{M}_{\text {earth }}=5.89 \times 10^{24} \mathrm{~kg} \sim 3 \times 10^{-5} \mathrm{M}_{\text {sun }}$
Hence, $\mathrm{M}_{\text {earth }} \ll \mathrm{M}_{\text {sun }}$ is a valid approximation
Get masses of planets if they have a Moon - Mercury? Venus?

PPart of Reason Pluto got Dumped

$\mathrm{M}_{\text {earth }}=5.9 \times 10^{24} \mathrm{~kg} ; \mathrm{M}_{\text {Jupiter }}=1.9 \times 10^{27} \mathrm{~kg}$ In 1971, Pluto's moon, Charon, was discovered.

Ground Based

HST/FOC
$\mathrm{p}^{2}=4 \pi^{2} \mathrm{a}^{3} / \mathrm{GM}_{\text {pluto }}$ if $\mathrm{M}_{\text {charon }} \ll \mathrm{M}_{\text {pluto }}$
Charon' s orbit: $\mathrm{p}=6.39 \mathrm{~d}=5.52 \times 10^{5} \mathrm{~s} ; \mathrm{a}=1.97 \times 10^{7} \mathrm{~m}$
$\rightarrow \mathrm{M}_{\text {pluto }}=1.485 \times 10^{22} \mathrm{~kg}=0.002 \mathrm{M}_{\text {earth }}$

Pluto

- Nix
- Hydra

Binary Stars: Visual Binaries

Two stars in binary orbit

 stars are resolved in telescope

Binary Stars: Visual Binaries

Orbitt obey Kepler's Laws BUT $\mathrm{M}_{\text {star1 }}$ not $\gg \mathrm{M}_{\text {star2 }}$
Must use $\mathrm{p}^{2}=\left[4 \pi^{2} / \mathrm{G}\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right] \mathrm{a}^{3}$
Stars revolve about a mutual centre of mass

Masses from Visual Binaries

Motion of each star with respect to CM can be measured and used to calculate stellar masses

Mass calculation if orbits are seen face-on (in plane sky)

$\mathrm{m}_{1} / \mathrm{m}_{2}=\mathrm{a}_{2} / \mathrm{a}_{1}$ (semi major axes ellipses)
Can use angular separations θ_{1} and θ_{2} (gives mass ratio)
If distance d known, $a=a_{1}+a_{2}$ can be measured from $\theta=\theta_{1}+\theta_{2} \rightarrow \theta=\mathrm{a} / \mathrm{d}$ $\rightarrow \mathrm{a}=\mathrm{d} \theta$.
Then $\mathrm{p}^{2}=\left[1 / \mathrm{m}_{1}+\mathrm{m}_{2}\right] \mathrm{a}^{3}$ gives sum of masses $m_{\text {tot }}$
$\mathrm{m}_{\text {tot }}=\mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{m}_{1}\left(1+\mathrm{m}_{2} / \mathrm{m}_{1}\right)$
m_{2} / m_{1} known so get m_{1}, and m_{2} from $\mathrm{m}_{\text {tot }}-\mathrm{m}_{1}$ - individual masses known

Sirius

The Sirius System

Visual binary system $P=50.05$ years
Parallax $=0.38$ " ($D=2.63 \mathrm{pc}$) Assume plane orbit in plane sky
Ratio semi major axes $=2.5=m 1 / m 2$
Sum masses $=a^{3} / p^{2}$ (in $A U$ and years) $a=a 2+a 1=5.7^{\prime \prime}+2.3^{\prime \prime}=15.0+6.0=21.0 \mathrm{AU}$ $m 1+m 2=21.0^{3} / 50.1^{2}=3.7$ Solar Masses $m 1=2.6, m 2=1.1$ (better is 2.1 and 1.0) Numbers not quite right - what is wrong?

Masses from Visual Binaries

Assumed orbit in plane of the sky - generally not true
Inclination, i, can be deduced by fact that CM will not be at focus of projected ellipse

Primary star seen here

$\mathrm{i}=$ inclination of orbit

Focus of observed ellipse
Projected focus
Plane of the sky

BE AT FOCUS OF
ELLIPSE...

BUT ISN'T BECAUSE
WE SEE THE PROSECTION
OF THE TRUE ORBIT
(tilted to the plane of sky)

Masses from Visual Binaries

Mass calculation if orbit inclined by angle i (most common situation)

Does not affect mass ratio: $m_{1} / m_{2}=a_{2} \cos i / a_{1} \cos i=a_{2}{ }^{\prime} / a_{1}{ }^{\prime} . a_{2}{ }^{\prime}$ and $a_{1}{ }^{\prime}$ are the projected semi-major axes on sky.

But $a=a^{\prime} / \cos i$, so apparent solution to Kepler's 3rd Law would be $\mathrm{p}^{2}=\left[1 /\left(\mathrm{m}_{1}+\right.\right.$ $\left.\left.\mathrm{m}_{2}\right)\right]\left(\mathrm{a}^{\prime} / \cos \mathrm{i}\right)^{3} \rightarrow \mathrm{~m}_{1}+\mathrm{m}_{2}=\left[\mathrm{a}^{\prime 3} / \mathrm{p}^{2}\right] /(\cos \mathrm{i})^{3}$
Inclination, i , can be deduced by fact that CM will not be at focus of projected ellipse - best usual case for mass determination.

Steilar Distances for Visual Binary Stars

How can we use binary stars to get stellar distances
Hint: Kepler's third law
$p^{2}=4 \pi^{2} a^{3} / G(M 1+M 2)$
Measure period - knowing mass of stars gives a then from angular separation and a get distance
eg Sirius A and $B-$ Mass $A=2.02 M_{\text {sun }}$ Mass $B=0.98 M_{\text {sun }}$ $P=50.1$ yrs gives a (semi major axis) $=2.84 \times 10^{12} \mathrm{~m}$ Observed angular semi major axis $=7.50$ "

Distance (from small angle formula) = 8.7 light years

Spectroscopic Binaries

SB: - two stars unresolved but binarity revealed by periodic shifts in wavelengths of spectral features due to Doppler Effect

THE DOPPLER EFFECT

$$
\Delta \lambda=\text { measured wavelength - rest wavelength }
$$

Spectroscopic Binaries

To Earth \downarrow

To Earth \downarrow

Stage 4

To Earth \downarrow

A, B A, B

Double-lined spectroscopic binary showing the orbits and resultant composite spectra. COM of system has velocity $\sim 15 \mathrm{~km} / \mathrm{s}$.

Spectroscopic Binaries

Case (a) Spectra of both stars are present (double-line SB) and orbital plane is along line-of-sight (as below - eclipsing spectroscopic binary).

NB: if orbits are inclined still sine curves, but amplitude is changed by $\sin \mathrm{i}$ - need other info to get i, v
$\left(\mathrm{v}_{2}\right)_{\max }=2 \pi \mathrm{a}_{2} / \mathrm{p} ;\left(\mathrm{v}_{1}\right)_{\max }=2 \pi \mathrm{a}_{1} / \mathrm{p}$ (for circular orbits)
$\left(\mathrm{v}_{2}\right)_{\max } /\left(\mathrm{v}_{1}\right)_{\max }=\mathrm{a}_{2} / \mathrm{al}=\mathrm{m}_{1} / \mathrm{m}_{2} \quad\left(\mathrm{~m}_{1} \mathrm{a}_{1}=\mathrm{m}_{2} \mathrm{a}_{2}-\right.$ Radial Velocity curve gives mass ratio)
$a=a_{1}+a_{2}=(p / 2 \pi)\left(v_{1}+v_{2}\right) ;$ then from $p^{2}=4 \pi^{2} a^{3} / G\left(m_{1}+m_{2}\right)-$ Kepler's Third Law - we derive $m_{1}+m_{2}=p\left(v_{1}+v_{2}\right)^{3} / 2 \pi G$ - have $m_{1}+m_{2}$ and ratio m_{1} / m_{2} - can solve for individual masses.

Spectroscopic Binaries

When $\mathrm{e} \neq 0$, velocity curves are skewed. Exact shapes of curves depend both on e and the orientation of the orbit with respect to observer.

These velocity curves are for 2 stars with masses $=1$ and 2 solar masses, $p=30$ days, radial velocity of the centre of mass $=42 \mathrm{~km} / \mathrm{s}$, $\mathrm{e}=0.4$, and plane of orbit lying along the line of sight to observer.

Usually, curves like these have to be modeled to choose the best-fit parameters.

Spectroscopic Binaries

Case (b) Orbits inclined by angle i; $\mathrm{v}_{\mathrm{rad}}=\mathrm{v} \sin \mathrm{i}\left(\mathrm{v}_{\mathrm{rad}}\right.$ is observed $)$

No effect on mass ratio:
$\mathrm{m}_{1} / \mathrm{m}_{2}=\mathrm{v}_{2} / \mathrm{v}_{1}=\left(\mathrm{v}_{2 \text { rad }} / \sin \mathrm{i}\right) /\left(\mathrm{v}_{\text {rad }} / \sin \mathrm{i}\right)=\mathrm{v}_{2} / \mathrm{v}_{1}$
So we can again get the ratio of the stellar masses without knowing i

Again, from Kepler's 3rd Law:
$\mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{p}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)^{3} / 2 \pi \mathrm{G}$
Thus, we have that $m_{1}+m_{2}=p\left(v_{\text {rrad }}+v_{2 \text { rad }}\right)^{3} / 2 \pi G \sin ^{3} \mathrm{i} \ldots$..eq.1)

spectroscopic Blnaries

Case (c) Only 1 star's spectrum visible (single-line SB) - currently great interest as companion very faint or dark like neutron star, white dwarf or PLANET.
$\rightarrow \mathrm{v}_{2 \mathrm{rad}}$ not measured, but we know $\mathrm{m}_{1} / \mathrm{m}_{2}=\mathrm{v}_{2 \mathrm{rad}} / \mathrm{v}_{1 \mathrm{rad}}$
so $v_{1 \mathrm{rad}}+\mathrm{v}_{2 \mathrm{rad}}=\mathrm{v}_{1 \mathrm{rad}}\left[1+\mathrm{v}_{2 \mathrm{rad}} / \mathrm{v}_{1 \mathrm{rad}}\right]=\mathrm{v}_{1 \mathrm{rad}}\left[1+\mathrm{m}_{1} / \mathrm{m}_{2}\right]$,
Sub into (eq.1) $\left.\left(m_{1}+m_{2}\right)=p\left(v_{1 \mathrm{rad}}+\mathrm{v}_{2 \mathrm{rad}}\right)^{3} / 2 \pi \mathrm{G} \sin ^{3} \mathrm{i}\right)$
$=\mathrm{p}\left(\mathrm{v}_{1 \mathrm{rad}}\right)^{3}\left(1+\mathrm{m}_{1} / \mathrm{m}_{2}\right)^{3} / 2 \pi \mathrm{G} \sin ^{3} \mathrm{i}$
or $m_{2}^{3} \sin ^{3} \mathrm{i} /\left(m_{1}+m_{2}\right)^{2}=\mathrm{pv}_{1 \mathrm{rad}}{ }^{3} / 2 \pi \mathrm{G} \ldots$...(eq. 2)
$\mathrm{pv}_{1 \mathrm{rad}}{ }^{3} / 2 \pi \mathrm{G}$ is called the mass function. It depends only on observed quantities. The mass function does not give the mass ratio (as only 1 spectrum seen) but it is useful for statistical studies if an estimated mass of at least 1 component known (colour, spectra).

Eg assume mass m_{1}, get minimum mass m_{2} assuming $i=90^{\circ}$.
If $m_{1} \gg m_{2}$ (eg planet) mass function simplifies to $m_{2}^{3} \sin ^{3} 1 / m_{1}^{2}$ (get minimum mass planet)

If $m_{1} \ll \mathrm{~m}_{2}$ (unseen star is a black hole) mass function becomes $\mathrm{m}_{2} \sin ^{3} \mathrm{i}$, and mass function gives lower limit on mass unseen object

13.6

Masses were obtained from observations of many binaries. Luminosities were obtained from parallax measurements. Note the relatively narrow mass range.

Fig. 13.11 is similar

State of Stellar Matter

With masses and radii known, the densities and state of matter of stars can be determined.

Sun:

$$
\begin{aligned}
& M_{\text {sun }}=2 \times 10^{30} \mathrm{~kg}=2 \times 10^{33} \mathrm{~g} \\
& R_{\text {sun }}=7 \times 10^{5} \mathrm{~km}=7 \times 10^{10} \mathrm{~cm}
\end{aligned}
$$

Mean density $\rho_{\text {sun }}=M_{\text {sun }} /\left(4 / 3 \pi R_{\text {sun }}{ }^{3}\right)=1.4 \mathrm{~g} / \mathrm{cm}^{3}$ (a bit more than ρ water)

Giant Stars:

$$
\begin{aligned}
& M_{\text {star }} \sim f \text { few } \times M_{\text {sun }} \text { in some cases } \\
& R_{\text {star }} \sim 500 R_{\text {sun }}
\end{aligned}
$$

$\rho_{\text {giant }}$ typically $<10^{-7} \mathrm{~g} / \mathrm{cm}^{3}$!
$3000 \mathrm{~K}<\mathrm{T}_{\text {eff }}<50,000 \mathrm{~K} \rightarrow$ stars are gaseous

What can you say about unseen mass? 51 Peg like Sun

