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CHAPTER  III  

PROPERTIES OF THE ROTATING FLUID 

 

A discussion of the behavior of liquid mercury in a rotating liquid mirror system 

is conducted. For the idealized inviscid fluid, global surface perturbations due to the 

spherical rotating earth and rotational axis misalignment are addressed as well as the 

effects of wind or convection induced angular velocity variations. The theoretical and 

empirical properties of surface waves are described in detail. 

 

A. The Spherical Rotating Earth as a Liquid Mirror Platform  

 

1) Zeroth Order Configuration – 

 

It is serendipitous that the equilibrium configuration of a fluid rotating at constant 

angular velocity (w), whose axis is parallel to a uniform gravitational field (Fg), is a 

parabola.  The confluence of the centrifugal pseudo-force (Fc) and gravity yield force 

balance only when the fluid normal vector is perpendicular to a parabolic surface. This 

arises simply by the monotonic dependence on mirror radial position (r) of the centrifugal 

force. As derived in Chapter I, the height (z) of the fluid surface as a function of radial 

position is given by: 
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=          (III.A.1a) 

 

This can be written in the form:       

 

F
rz
4

2

=          (III.A.1b) 

 

which we recognize as the equation for a parabola with focal length: 

 

22w
gF =           (III.A.1c) 

where g is the local gravitational acceleration. (g=981.67 cm/s 2  at NODO).  

To zeroth order this describes the figure of the LMT primary mirror. 

 

2) Curvature of the Earth – 

 

In the above equation we have neglected the fact the Fg is a radial vector pointing 

at earth's center. Thus Fg is not everywhere perpendicular to the mirror's surface, but has 

a radial component pointing inward toward the axis of rotation, whose magnitude is 

proportional to the radial displacement from the mirror's axis of rotation. The 

equipotential surface has been given to fourth order in r by Hickson (PC): 
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where RE  = 6.378 x 108 cm is the Earth’s radius. 

Factoring out the zeroth order term from those with quadrature dependence on r we have:  
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The corrected focal length F can be written: 

 

11 )( 20
−−=

wR
gFF
E

       (III.A.2c) 

Where 20 2w
gF =  is the zeroth order focal length. 

 

The first order correction in equation (III.A.2a) introduces a correction to the 

zeroth order focal length that is linearly dependent on focal length itself as seen in 

equation (III.A.2c). For the NASA-LMT and its 4.51 meter primary mirror focal length, 

the correction is 1.42 parts per million (ppm) or 6.38 microns (um) which is negligible. 

Even for a long focal length (30m f/1.5) LMT the large focal shift (0.635 millimeters 

(mm)) can be easily compensated with a focus adjustment.  
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The second order correction in equation (III.A.2a) is independent of mirror 

azimuth and proportional to r4. This is the first Seidel wave front aberration – spherical 

aberration. It is small relative to the wave front errors of several waves ( λ =500 

nanometer (nm) visible green light) induced by atmospheric turbulence (Fried 1966). The 

surface deviation is only λ<∆z /2  at the perimeter of a 30m diameter f/1.5 LMT.  The 

results of all corrections attributable to the earth’s curvature for various LMTs if located 

at NODO are shown in Table III.A.2-1. 

 

 

   Table III.A.2-1  Various LMTs - Surface Deviations resulting from Earth’s Curvature 

 0F    (Term 1) 

(Zeroth Order 

Focal length) 

1st Order  (Term 

2) 

(Focal shift) 

2nd Order   (Term 3) 

(Spherical Aberration; 

Maximum Surface Deviation 

at mirror perimeter) 

NASA-LMT 

3.0 m  f/1.5037 

(w=1.043107) 

4.51105 m +6.38 um 

(1.42 ppm) 

+ 000,1/88.4 λ  

)44.2( nm  

LZT 

6.0 m f/1.5 

(w=0.738493) 

9.0 m +25.4 um 

(2.82 ppm) 

+ 100/96.1 λ  

)80.9( nm  

12.0 m  f/1.5 

(w=0.522194) 

18.0 m +102 um 

(5.64 ppm) 

+ 100/83.7 λ  

)2.39( nm  

20.0 m f/1.5 

(w=0.404489) 

30.0 m +282 um 

(9.41 ppm) 

+ 10/18.2 λ  

)9.108( nm  

30.0 m f/1.5 

(w=0.330264) 

45.0 m +635 um 

(14.1 ppm) 

+ 10/90.4 λ  

)245( nm  
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3) Rotation of the Earth –  

 

The Coriolis force associated with the Earth's rotation is a more serious problem 

than the radial nature of Fg.  Coriolis forces introduce a focal shift, coma, astigmatism, 

and field curvature. Gibson’s derivation (Gibson 1990), which neglects the earth’s 

curvature, contains a mistake in the calculation of the vector products. Retaining Gibson’s 

assumptions, but correcting the errors, the equipotential surface to second order is given 

by: 
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Where 51027.7 −=Ω x  rad/sec is the Earth’s angular rotational velocity, α  is the latitude 

of the mirror, and β  is the azimuthal location on the mirror (relative to north) of an 

arbitrary point. We recover equation (III.A.1a) as 0→Ω . We also recover equation 

(III.A.1a) to first order with the substitution )( Ω+→ ww  when 90±→α  (for a mirror 

located at either pole where Coriolis forces only add or subtract to the angular rotational 

velocity of the mirror and induce only a small focal length shift). 

Factoring out the zeroth order term from those with higher order dependence on r 

we have: 
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The corrected focal length F becomes: 

 

1sin21 )(0
−Ω+=

w
FF α                (III.A.3c) 

 

The first corrective term in equation (III.A.3a) introduces a focal shift as shown in 

equation (III.A.3c). For the 4.51 m focal length NASA-LMT at the NODO location 

(α =32.979408 N degree latitude) the shift amounts to 76 ppm or –342 um and is easily 

compensated by focus adjustments.   

The second and third corrective terms in equation (III.A.3a) depend on radial and 

azimuthal mirror position in the form βcos3r  corresponding to the second Seidel wave 

front aberration – coma. For the NASA-LMT at NODO the first coma term introduces a 

maximum λ23.3± ( ± 1.62 micron (um)) surface deviation for the mirror perimeter 

(at β =0 and 180 degrees for positive and negative deviations respectively) while the 

second coma term is always negligible (< λ /1000). Table III.A.3-1 shows maximum 

surface deviations for the NASA-LMT at various radial and azimuthal mirror positions 

for the dominant corrective term.  Approximately two-thirds of the mirror’s surface is 

subject to surface deviations greater than 2/λ±  ( ± 0.250 um) and almost one-third of the 
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  Table III.A.3-1. NASA-LMT: Surface Deviation from 2nd Order Coma Term (Coriolis)   

 β =0(+) and 

180(-) 

degrees 

β = ± 30(+) 

and ± 150(-) 

degrees 

β = ± 45(+) 

and ± 135(-) 

degrees 

β = ± 60(+) 

and ± 120(-

) degrees 

β = ± 90 

deg 

Edge Zone 

(100% area) 

(r=150 cm) 

± 1.62 um 

λ23.3±  

 

± 1.40 um 

λ80.2±  

 

± 1.14 um 

λ28.2±  

± 0.81 um 

λ62.1±  

 

0 

80% Zone 

(64% area) 

(r=120 cm) 

± 0.827 um 

λ65.1±  

 

± 0.716 um 

λ43.1±  

 

± 0.585 um 

λ17.1±  

 

± 0.414 um 

λ827.0±  

 

0 

60% Zone 

(36% area) 

(r=90 cm) 

± 0.349 um 

λ698.0±  

 

± 0.302 um 

λ604.0±  

 

± 0.247 um 

λ494.0±  

 

± 0.174 um 

λ349.0±  

 

0 

40% Zone 

(16% area) 

(r=60 cm) 

± 0.103 um 

λ207.0±  

 

± 0.090 um 

λ179.0±  

 

± 0.073 um 

λ146.0±  

 

± 0.052 um 

λ103.0±  

 

0 

20% Zone 

(4 % area) 

(r=30 cm) 

± 0.0129um 

λ0259.0±  

 

± 0.0112um 

λ0224.0±  

 

± 0.0091um 

λ0183.0±  

 

± 0.007um 

λ0129.0±  

 

0 

Center Zone 

(r=0 cm) 

0 0 0 0 0 
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surface has deviations greater than λ± . Ideally these errors should be compensated in the 

corrective optics, but the additional complexity would have been cost prohibitive. Image 

degradation resulting from deviations at this level will be masked by mirror speed 

variations (Section III.D) and observatory (dome) and atmospheric seeing and have 

minimal effect.  For larger LMTs, however, the surface deviations can reach >100 λ (30 

m f/1.5 LMT) and should be compensated in the corrective optics. Interestingly, the 

Coriolis induced coma occurs axially as well as off-axis, unlike the purely off-axis coma 

normally associated with parabolic mirrors and already compensated in the original 3-

element and present 4-element NASA-LMT corrector.  

The fourth and fifth corrective terms in equation (III.A.3a) are proportional to 

both radial and azimuthal mirror position in the form β24 cosr  which is a combination 

of the third and fourth Seidel wave front aberrations – astigmatism and field curvature. 

The corrections depend on both radial and azimuthal mirror position. These terms are 

negligible for the NASA-LMT (< λ /10,000) as well as for a much larger 30 m f/1.5 LMT 

(< λ /200). The maximum results of all corrections attributable to the earth’s rotation for 

various LMTs if located at NODO are shown in Table III.A.3-2. 

 

B. Axial Tilt 

 

Ideally, the rotational axis of the mirror should be parallel to Fg. In reality, the 

mechanics of the supporting structure and the errors in the instrumentation used to 

determine level, set a limit to the degree to which true parallelism can be attained.  
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   Table III.A.3-2. Various LMTs - Surface Deviations resulting from Coriolis Effects  

 1st Order 

(Term 2) 

(Focal 

shift) 

2nd Order  (Term 3 & 4) 

(Coma; Maximum 

Surface Deviation - 

mirror perimeter at 

β = 0(+) and 180(-) 

degrees)  

3rd Order   (Term 5 & 6) 

(Astigmatism and Field 

Curvature; 

Maximum Surface Deviation  

– mirror perimeter at 

β = 0 or 180 degrees) 

NASA-LMT 

3.0 m 

f/1.5037 

(w=1.043107) 

-342 um 

(76 ppm) 

± 1.62 um 

λ23.3±  

± 0.123 nm 

1000
245.0 λ±  

+0.0236 nm 

+
1000
047.0 λ  

+1.79 fm 

<<

000,000,10
λ  

LZT 

6.0 m f/1.5 

(w=0.738493) 

-965 um 

(107 ppm) 

± 4.59 um 

λ18.9±  

± 0.492 nm 

1000
984.0 λ±  

+0.0947 nm 

+
1000
189.0 λ  

+10.2 fm 

<<

000,000,10
λ  

12.0 m  f/1.5 

(w=0.522194) 

2730 um 

(152 ppm) 

± 13.0 um 

λ9.25±  

± 1.97 nm 

1000
94.3 λ±  

+0.379 nm 

+
1000
757.0 λ  

+57.4 fm 

+
000,000,10

15.1 λ  

20.0 m f/1.5 

(w=0.404489) 

5873 um 

(196 ppm) 

± 27.9 um 

λ8.55±  

± 5.47 nm 

100
09.1 λ±  

+1.05 nm 

+
1000

10.2 λ  

+206 fm 

+
000,000,10

12.4 λ  

30.0 m f/1.5 

(w=0.330264) 

10790 um 

(240 ppm) 

± 51.3um 

λ103±  

± 12.3 nm 

100
46.2 λ±  

+2.37 nm 

+
1000

73.4 λ  

+568 fm 

+
000,000,1

14.1 λ  
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In the case of the NASA-LMT utilizing a 5 arcsecond/division spirit level mounted on the 

mirror itself (Chapter V), parallelism to approximately ± 0.2 arcsecond can be achieved.  

An alternative electronic level enables ± 0.04 arcsecond accuracy. Girard and Borra 

(1997) have suggested that <0.5 arcsecond parallelism error in the laboratory is sufficient 

to reduce tilt-induced aberrations to acceptable levels for small LMTs . Results obtained 

with the NASA-LMT are inconclusive. A series of images shown in Chapter V illustrates 

entrance pupil images obtained at parallelism errors of 0, 1 and 7 arcseconds. Poor 

atmospheric seeing the night this data was acquired has likely obscured the results, but 

there is evidence of an intensified annulus in the highly tilted case.  

Gibson (1990) has shown analytically the aberrations induced by a lack of 

parallelism for the case neglecting the earth’s curvature. Hickson (PC) has recently 

performed the analysis without this simplification. The treatment here follows Gibson’s 

and therefore is only approximate in terms of the magnitude of the errors and their 

classification and as such should be used as a qualitative guide. An exact solution should 

utilize Hickson’s treatment once published. 

With minor modification to align β  with the direction of axial tilt, the 

equipotential surface in the plane of the mirror can be represented by (Gibson 1990): 

 

βθθ costansec
2

22

r
g
rwz +=             (III.B.a) 

 

Where θ  is the angle between Fg and the mirror rotational axis, and β  is the azimuthal 
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location on the mirror (relative to the tilted direction) of an arbitrary point. The corrected 

focal length F becomes: 

 

θθ cos)(sec 0
1

0 FFF == −        (III.B.b) 

 

The first term introduces a simple focal length shift dependent on cosθ . Even for a 7 

arcsecond tilt, the shift amounts to only 1 part per billion (ppb) or 4.5 nm for the NASA-

LMT. For larger mirrors, similarly tilted, the shift is small and easily compensated (10 

ppb or 450 nm for a 30m f/1.5).  

The second term, proportional to r cos β , signifies distortion and can be 

interpreted as an asymmetric thickening of the Hg layer progressing from the high edge of 

the mirror ( β =180 degrees; thinner) to the low end ( β =0 degrees; thicker). For the 

NASA-LMT with a 1 arcsecond tilt error, this term yields a maximum surface deviation 

at the mirror perimeter of ± 7.27 um or λ5.14± (at β =0 and 180 degrees for positive and 

negative deviations respectively). With a 7 arcsecond tilt error, the maximum surface 

deviation for the mirror perimeter increases to ± 50.9 um or λ102± . These are 

significant perturbations to the mirror’s parabolic surface and convey the importance of 

accurate mirror axial tilt alignment. Ideally the NASA-LMT mirror should be parallel to 

Fg within 0.1 arcsecond or better in order to bring the maximum surface deviation to 

< λ45.1± . At this level, image degradation will be masked by mirror speed variations 

(Section III.D) and observatory (dome) and atmospheric seeing and have minimal effect.  
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Compensation must obviously be made by proper axial alignment rather than an arbitrary 

constraint on the design of corrective optics. Table III.B-1 lists maximum surface 

deviations (along the β =0-180 degree axis) for a range of tilt errors and mirror radial 

positions for the NASA-LMT.  

Since at a constant axial tilt error the surface deviation increases linearly with 

mirror radial position at a given mirror azimuth ( β ), the situation is more serious for 

larger LMTs.  A 30m f/1.5 LMT with 0.1 arcsecond tilt error, will have a maximum 

surface deviation of ± 7.27 um or λ5.14± , which is identical to the maximum shown for 

a 3.0 m NASA-LMT with 1 arcsecond tilt error. Larger LMTs must be more accurately 

aligned than smaller LMTs for a given surface deviation criteria. 

 

C.  Fluid Thermal Expansion  

 

The finite coefficient of expansion for Hg (0.18 um/mm- Cο when constrained in 

two dimensions; Gibson 1990) implies a small displacement to the focal length due to 

expansion or contraction of the Hg film itself. During an evening’s data acquisition, the 

temperature of the mirror can vary by as much as 25 Cο . For the 1.61 mm Hg film 

thickness incorporated by the NASA-LMT, this yields a 7.25 um change in height of the 

parabolic surface. This is negligible however relative to the 54 um/ Cο  focal shift 

attributable to the mirror container and prime focus structural components (Chapter IV). 
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       Table III.B-1. NASA-LMT: Surface Deviation from Mirror Tilt Distortion Term  

 θ = 1.0 

arcsecond 

θ = 0.5 

arcsecond 

θ = 0.2 

arcsecond 

θ = 0.1 

arcsecond 

θ = 0.01 

arcsecond 

Edge Zone 

(100% area) 

(r=150 cm) 

± 7.27 um 

λ5.14±  

 

± 3.63 um 

λ25.7±  

 

± 1.45 um 

λ90.2±  

± 0.727 um 

λ45.01±  

 

± 0.0727 um 

λ145.0±  

 

80% Zone 

(64% area) 

(r=120 cm) 

± 5.82 um 

λ6.11±  

 

± 2.91 um 

λ80.5±  

 

± 1.16 um 

λ32.2±  

 

± 0.582 um 

λ16.1±  

 

± 0.0582 um 

λ116.0±  

 

60% Zone 

(36% area) 

(r=90 cm) 

± 4.37 um 

λ7.8±  

 

± 2.18 um 

λ35.4±  

 

± 0.873 um 

λ74.1±  

 

± 0.437 um 

λ87.0±  

 

± 0.0437 um 

λ087.0±  

 

40% Zone 

(16% area) 

(r=60 cm) 

± 2.91um 

λ8.05±  

 

± 1.46 um 

λ9.2±  

 

± 0.583 um 

λ16.1±  

 

± 0.291 um 

λ58.0±  

 

± 0.0291 um 

λ058.0±  

 

20% Zone 

(4 % area) 

(r=30 cm) 

± 1.46 um 

λ9.2±  

 

± 0.728 um 

λ45.1±  

 

± 0.291 um 

λ58.0±  

 

± 0.146 um 

λ29.0±  

 

± 0.0146 um 

λ029.0±  

 

Center Zone 

(r=0 cm) 

0 0 0 0 0 
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D. Mirror Angular Velocity Stability  

 

It is straightforward to derive the requisite angular velocity stability of the mirror  

by assuming Hg is a perfect fluid of zero viscosity and that speed variations translate into 

focal length (F) variations alone. This ignores the complex effects associated with wave 

activity and fluid flow driven by small speed changes and the surface deviations and wave 

front errors that result. In considering focal stability (dF) as it relates to angular velocity 

(ω ), a simple analytic approach yields, by differentiating each side of Equation (III.A.1c), 

the relation: 

 

 
ω

ωd
F
dF 2−=           (III.D.a) 

 

By the simple geometry of the converging optical beam, the focal instability can be 

related to a resultant defocusing profile of characteristic size (I): 

 

ω
ωdDFocusI ⋅⋅= 2              or          

R
dF

FocusI =     (III.D.b) 

 

where D is the mirror diameter, and R is the effective focal ratio including the corrector 

(which has weakly positive power) R =
D
F

 = 1.7189. 

The final image size is given by a convolution of the defocusing profile caused by  
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the focal variations with the atmospheric seeing profile (Hickson PC). The final image 

size is given exactly by adding the second moments of these profiles in quadrature, or 

approximately by using the FWHM: 

 

222
FocusISeeingIFinalI +≅         (III.D.c) 

 

which using (III.D.b) can be rewritten in terms of angular velocity variation:  

 

1

2

2
−= 













SeeingI
FinalI

D
SeeingId

ω
ω       (III.D.d) 

 

If we allow angular velocity induced focal variations to yield a 5% expansion of the final 

image profile relative to the nominal seeing disk:  

 

05.1=
SeeingI
FinalI

        (III.D.e) 

 

then inserting the nominal value for the minimum seeing at NODO (Smith and Salisbury 

1961) of radx 6108785.3 −  (0.8 arcsecond), equivalent to a profile width of 20 um at the 

NASA-LMT focal plane, into equation (III.D.d) yields: 
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61007.1 −−= xd
ω
ω  =  1.07 ppm       (III.D.f) 

 

Equivalently, in term of mirror period )2(
ω
π=P , we have: 

 

61007.1 −=−= xd
P
dP

ω
ω  =  1.07 ppm      (III.D.g) 

 

Empirical results relating mirror angular velocity (or mirror period) stability to 

image quality have been obtained for the first time with the NASA-LMT. Mirror angular 

velocity data have been recorded under various observing conditions while astronomical 

data was simultaneously acquired.  Figures III.D-1 through 5 show the correlation 

between mirror angular velocity stability and image quality. The five night’s data indicate 

that mirror angular velocity stability is crucial to obtaining good image quality.  As the 

mirror period error decreases, the image quality improves as quantified by the full-width-

half-maximum (FWHM) of the stellar point-spread-functions (PSF). Other factors such as 

atmospheric seeing complicate the relationship between mirror period error and image 

quality. Small scale correlations are present but limited, whereas large scale trends are 

clearly evident in each of the five nights. This is true even in Figure III.D-2 wherein the 

correlation is evident despite erratic seeing which caused large amplitude oscillations in 

the FWHM. The confidence in each case exceeds 99% as determined by the correlation 

coefficient (Taylor 1982) for each night’s data. 
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In each of these five nights, the mirror stability is never better than 4 ppm and is 

more typically between 5 and 20 ppm while observing. In light of the ~1 ppm stability 

requirement for a maximum 5% image blur (III.D.g), it is evident that additional 

performance can be obtained by improving the rotational stability of the mirror. This can 

be achieved primarily by better control of air currents around the mirror which is located 

10 meters from the dome aperture in a recessed enclosure surrounded by a shroud 

extending 2 meters above and 1 meter below the mirrors surface. Despite this protection, 

the mirror is still subject to the effects of external winds as well as convective air currents 

arising from the differential heating and cooling associated with the LMT superstructure 

and the observatory itself.  The installation of wind baffles and sensitive air motion 

sensors that can detect flows of <20 cm/second are being considered to better monitor and 

control the mirror environment and thereby improve mirror rotational stability.    

As a baseline for mirror angular velocity stability the mirror period has been 

recorded with the observatory dome closed. Figures III.D-6 through 8 show that even 

under these quiescent conditions the mirror retains a residual period error of between 1 

and 2 ppm due to convection and inaccuracies in the motor drive and electronics. Figure 

III.D-6 demonstrates the return of the mirror to a quiescent state after the observatory 

dome is closed (t=0) at the end of an evening’s observations. Figures III.D-7 and 8 appear 

to illustrate the effects of external winds leaking into the dome cavity while the dome is 

closed. Figure III.D-7 terminates with the dome opening for an evening’s observing, 

demonstrating the characteristic increase in mirror period instability when the mirror is 

exposed to the external environment. 
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Figure III.D-1. The correlation between instability of the mirror rotational period and image quality. The upper trace (blue) is a 192 second 
moving average of the FWHM of stellar images taken from a TDI scan acquired while the mirror rotational period was recorded (both at 12 
second intervals). The lower trace (pink) is the standard deviation of each 16 samples (192 seconds) of the mirror rotational period normalized 
by the mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The traces correlate with >99.9% confidence. 
The correlation is subject to the additional influence of atmospheric seeing. Trendlines are shown only to illustrate the overall correlation. 

     



     
 

Correlation Between Image Quality (FWHM) and Mirror Rotational Stability
NODO - 10/12/96  03:02 UT
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Figure III.D-2. The correlation between instability of the mirror rotational period and image quality. The upper trace (blue) is a 192 second 
moving average of the FWHM of stellar images taken from a TDI scan acquired while the mirror rotational period was recorded (both at 12 
second intervals). The lower trace (pink) is the standard deviation of each 16 samples (192 seconds) of the mirror rotational period normalized 
by the mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The traces correlate with >99.9% confidence. 
The correlation is subject to the additional influence of atmospheric seeing (large amplitude oscillations in the FWHM trace).  
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Figure III.D-3. The correlation between instability of the mirror rotational period and image quality. The upper trace (blue) is a 192 second 
moving average of the FWHM of stellar images taken from a TDI scan acquired while the mirror rotational period was recorded (both at 12 sec 
intervals). The lower trace (pink) is the standard deviation of each 16 samples (192 seconds) of the mirror rotational period normalized by the 
mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The traces correlate with >99.9% confidence. The 
correlation is subject to the additional influence of atmospheric seeing. Several sharp FWHM peaks correlate well with mirror speed anomalies.  

     



     
 

Correlation Between Image Quality (FWHM) and Mirror Rotational Stability
NODO - 11/10/96  01:12 UT

 Correlation Coefficient = 0.507195
PN<<0.1%

0

10

20

30

40

50

0 1800 3600 5400 7200 9000 10800 12600 14400 16200 18000
Time (seconds)            Sample Interval = 12 seconds or 1.992188 Mirror Periods

M
irr

or
 P

er
io

d 
Er

ro
r (

pp
m

)
S.

D
. M

irr
or

 P
er

io
d 

(N
=1

6)
/P

er
io

d

1

1.2

1.4

1.6

1.8

2

2.2

M
ov

in
g 

A
ve

ra
ge

 o
f F

W
H

M
 

(a
rc

se
co

nd
s)

 [N
=1

6;
 1

92
 s

ec
on

ds
]

Mirror Period Error (ppm)
192 second Moving Average of FWHM
6th Order Polynomial Trendline  R2=0.4913
6th Order Polynomial Trendline  R2=0.4635

 

 
Figure III.D-4. The correlation between instability of the mirror rotational period and image quality. The upper trace (blue) is a 192 second 
moving average of the FWHM of stellar images taken from a TDI scan acquired while the mirror rotational period was recorded (both at 12 sec 
intervals). The lower trace (pink) is the standard deviation of each 16 samples (192 secs) of the mirror rotational period normalized by the 
mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The traces correlate with >99.9% confidence. The 
correlation is subject to the added influence of atmospheric seeing. Several uncorrelated FWHM peaks are presumably related to poor seeing.  
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Figure III.D-5. The correlation between instability of the mirror rotational period and image quality. The upper trace (blue) is a 192 second 
moving average of the FWHM of stellar images taken from a TDI scan acquired while the mirror rotational period was recorded (both at 12 
second intervals). The lower trace (pink) is the standard deviation of each 16 samples (192 seconds) of the mirror rotational period normalized 
by the mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The traces correlate with >99.9% 
confidence. The correlation is subject to the additional influence of atmospheric seeing.  

     



     
 

Mirror Rotational Period and Stability - Observatory Dome Closed 
NODO - 10/08/96 05:16 UT to 10/09/96 01:28 UT
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Figure III.D-6. The stability of the mirror rotational period with the dome sealed. The mirror period (upper trace; blue) is recorded at 12 
second intervals. The lower trace is the standard deviation of each 16 samples (192 sec) of the mirror period normalized by the mean rotational 
period to yield a relative measure of the mirror rotational instability (ppm). As the dome is closed, the rotational instability is 10 to 25 ppm, 
declining to the 5 ppm for ~10 hours, then declining further to 1 to 2 ppm . This non-static behavior is probably related to external winds 
leaking into the dome cavity, since the quiescent period occurs during the daytime when solar induced diurnal heating would be most extreme. 

     



     
 

Mirror Rotational Period and Stability - Observatory Dome Closed 
NODO - 10/12/96 09:47 UT to 10/13/96 03:13 UT
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Figure III.D-7. The stability of the mirror rotational period with the dome sealed for several days. The mirror period (upper) is recorded at 12 
second intervals. The lower trace is the standard deviation of each 16 samples (192 seconds) of the mirror period normalized by the mean 
rotational period to yield a relative measure of the mirror rotational instability (ppm). The rotational instability rises from 2.5 to 4 ppm 
initially, then gradually declines to the 1.5 ppm where it remains until the dome is re-opened, causing a rapid increase in rotational instability. 
The instability occurs at nighttime and thus is likely due to wind leakage since its does not correlate with solar diurnal heating and cooling.  

     



     
 

Mirror Rotational Period and Stability - Observatory Dome Closed 
NODO - 10/14/96 12:03 UT to 10/16/96 01:16 UT

0

2

4

6

8

10

12

14

16

18

20

0 12000 24000 36000 48000 60000 72000 84000 96000 108000 120000 132000

Time (seconds)            Sample Interval = 12 seconds or 1.992188 Mirror Periods

M
irr

or
 P

er
io

d 
Er

ro
r (

pp
m

)
S.

D
. M

irr
or

 P
er

io
d 

(N
=1

6)
/P

er
io

d

60
23

.1
60

23
.3

60
23

.5
60

23
.7

M
irr

or
 R

ot
at

io
na

l P
er

io
d 

(m
ill

is
ec

on
ds

)

Mirror Period Error (ppm)
Mirror Rotational Period (milliseconds)  <PER>=6023.523207+-0.023442

 

Figure III.D-8. The stability of the mirror rotational period with the dome sealed for several days. The mirror period (upper) is recorded at 12 
second intervals. The lower trace is the standard deviation of each 16 samples (192 secs) of the mirror rotational period normalized by the 
mean rotational period to yield a relative measure of the mirror rotational instability (ppm). The mirror rotational instability varies between 1.5 
and 6 ppm with an approximately 24 hour period. This non-static behavior may be related to external winds leaking into the dome cavity, since 
the period of instability occurs in the evening rather during solar heating. High external nighttime winds seem the most likely cause. 
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E. Entrance Pupil Aberrations – Mirror Surface Waves and Above Surface Effects 

 

A variety of wave types have been observed on the surface of the NASA Liquid 

Mirror under point source illuminated Focault and Ronchi testing at the mirror’s radius of 

curvature in the laboratory at NASA-JSC. These surface waves, as well as convective and 

atmospheric seeing phenomena existing independent of the mirror surface, have also been 

observed via illumination by off-axis stars during routine astronomical data acquisition at 

NODO.  All of these phenomena have the effect of reducing the optical quality by either 

altering the parabolic surface in the case of waves, or introducing wave front errors in the 

case of either convective currents in the dome or atmospheric seeing.  

The surface waves consist of primarily spiral and concentric wave formations that 

are present at all times. The spiral waves possibly arise from vortices that develop in the 

boundary layer of air immediately above the rotating mirror surface. They are intrinsic to 

the rotating Hg mirror/air system (or water mirror/air system as seen in Section II.B) and 

therefore difficult to mitigate. The concentric waves are induced by vibrations of the 

mirror assembly and pier and have been significantly reduced at the NODO installation 

by stiffening the substructure. There also exist secondary waves that can arise from any 

transitory event such as a gust of wind, an impact to the mirror surface by debris, or a 

change in mirror rotational velocity.  With the exception of an occasional insect impact, 

these secondary waves have been almost completely eliminated at NODO by proper 

shielding of the mirror and stable rotational velocity control. 

Phenomena immediately above the Hg surface consists of convective air currents 
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emanating from the CCD control electronics package mounted in the prime focus 

assembly above the center of the mirror. Faint waves of heated air with a lower index of 

refraction can be seen streaming from the vicinity of the prime focus assembly. A cooling 

jacket has been proposed to mitigate this problem. The normally engaged mirror brake 

solenoid located beneath the mirror’s northern perimeter is an additional source of 

convective heating, but it dissipates only 6 watts and the effects have never been seen in 

the entrance pupil images. 

Of greatest significance to any large astronomical mirror are the effects of dome 

and atmospheric seeing. The former is caused by convective air currents that arise when 

the mirror, dome, and external environment are not in thermal equilibrium. While the 

effects of dome seeing have never been observed in the entrance pupil images, exhaust 

fans are used at NODO to aid the equalization process. It has been observed at major 

observatories (Hickson PC) that mirror seeing is reduced when the primary mirror is 

maintained at temperature slightly below ambient (no more than a 2 C0  differential). 

This results in a descending laminar column of air in the region above the mirror. The 

installation of a closed-cycle cold fluid circulating system beneath the liquid mirror at 

NODO is being considered to evaluate this effect.  

Unlike dome seeing, the effects of atmospheric seeing are readily seen in the 

entrance pupil images acquired at NODO. A mottled pattern of light and dark cells or 

striations of typically 5 to15 cm scale length can be seen in the pupil. Depending upon the 

night or time of night, the pattern can vary between random fluctuations of light and dark 
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areas to a unidirectional rapid motion with light and dark streamers elongated in the 

direction of motion. This mottled appearance arises from wave front errors between 

atmospheric seeing cells of characteristic dimension 0R  (Fried 1966). The wave front 

errors induced by atmospheric seeing represents the fundamental limiting factor to the 

performance of the LMT or any large astronomical mirror. An adaptive optics (AO) 

system involving a wave front sensor and compensating tip-tilt mirror has been proposed 

(Hickson PC) to remove the primary seeing component. 

 

1) Dispersion Relation 

 

Before describing the physical properties and possible causes of the waves 

observed on the liquid mirror, two theoretical dispersion relations are presented so that a 

comparison can be made with the observations.  

For a non-rotating system, Landau and Lifshitz (1959) describe the dispersion 

relation involving both gravity and capillary waves as: 

 

)tanh()(
3

2 khkgkLL ρ
αϖ +=          (III.E.1a) 

 

Where: 

LLϖ  =  angular frequency of the wave (radians/sec) (Landau and Lifshitz case) 

  k   =  wave number  
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  g   =  gravitational acceleration (981.67 2sec/cm at NODO) 

α   =  surface tension of Hg (485 dyne/cm at 21.5 C0 ) 

ρ   =  density of Hg (13.546 3cmg at 20 C0 ) 

  h   =   depth of the Hg layer (cm)  (0.225 cm at JSC; 0.161 cm at NODO) 

 

Normally this expression can be simplified for two wavelength regimes where (kh) is 

large and small relative to unity, but the properties of the waves observed on the NASA 

liquid mirror (0.148 < (kh) <2.07) as described later in this section do not generally allow 

this simplification. The group and phase velocity are thus: 
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Hickson (PC) has derived the dispersion relation for the rotating fluid case: 

 

ρ
αϖ

4
222 4 hkghkH ++Ω=        (III.E.1d) 

 

Where: 
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Hϖ   =   angular frequency of the wave (radians/sec) ( Hickson case) 

Ω     =  angular velocity of rotating system (radians/sec)  

             (= 1.043 radians/sec for the NASA-LMT) 

 

The group and phase velocity for the Hickson derivation are thus: 
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These theoretical results will be compared with the empirical measurements later in this 

section. 

 

2) Spiral Waves – Possible Generation Mechanism 

 

Numerous experiments and theoretical analyses have been conducted of fluids 

contained between concentric rotating cylinders and spheres, or bounded by a rotating disk 

or disks (Greenspan 1968). By extension, these treatments, coupled with a study 

performed on a high-speed rotating disk with an impressionable surface, have suggested a 

possible explanation as to the cause of the spiral waves observed on the surface of the 
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NASA liquid mirror and other mirrors (Girard and Borra 1997). Figure III.E.2-1 shows an 

example of these waves as observed from the radius of curvature on the NASA-LMT 

primary mirror at NASA-JSC. Further examples are shown later in this section. 

It has been proposed that the spiral wave pattern observed on a rotating fluid 

results from a series of horizontal roll vortices in the boundary layer associated with the 

rotating medium or media. These vortices represent an instability in the boundary layer 

either interior to the fluid or at a fluid-fluid interface. Generation of the instability requires 

there be flow relative to the global motion of the system. The spiral pattern has been 

induced in several ways. Faller and Kaylor (1966) did so by rotating a sealed water tank 

which possessed an inner and outer annulus acting as a sink and source respectively. By 

varying the source strength and thereby generating a relative flow within the rotating fluid, 

separate from the global rotation of the system, Faller and Kaylor were able to artificially 

create an instability in the fluid boundary layer. This instability manifested itself as a series 

of spiral waves within the rotating fluid. This example is interesting as it lends insight as 

to the mechanism by which the spiral pattern may be generated in the LMT system. Since 

the water tank was sealed, the pattern could not originate in the water-air boundary, but 

instead was artificially induced in the boundary layer interior to the fluid itself via the 

source-sink flow. In the case of the LMT, where there is no source or sink flow of Hg, the 

instability may arise from the relative flow between the Hg surface and the inferior 

rotation of the air above it.  Figure III.E.2-2 shows the spiral patterns, called Class B 

waves, observed by Faller and Kaylor. 

Gregory, Stuart, and Walker (1955) observed the spiral pattern on a rapidly 
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NASA-LMT @ JSC: Focault Test -Spiral Waves Near Mirror Perimeter 

 
Figure III.E.2-1. Edge zone (92% radius) of the liquid mirror under point source illumination at 
the radius of curvature. The spiral waves are clearly visible with ≅λ 4.5 to 6.8 cm at this range 
of radial position (138 to 150 cm).  The waves intersect the mirror rim at an angle of θ = 26.5 
degrees and the entire pattern rotates at an azimuthal velocity slightly inferior to the mirror 
rotational velocity. At the mirror perimeter, the transverse wave phase speed is approximately 34 
cm/sec directed toward the mirror interior. The spiral waves are possibly due to vortices created 
by non-laminar airflow over the Hg fluid surface. Concentric vibration-induced waves ( ≅λ 1.7 
cm) emanating from the mirror rim are also visible in the upper left quadrant. A mylar cover 
obscures the lower half of the mirror.  Rotation: CCW 
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     Class B Spiral Waves in a Sealed Water Tank 

 
Figure III.E.2-2. Faller and Kaylor (1966) demonstrated the formation of horizontal roll vorticies 
in the boundary layer of water in a rotating sealed water tank 7.6 cm deep and 91 cm in diameter. 
The instability giving rise to the spiral formation (Class B waves)  was generated by introducing 
an azimuthal source and sink flow originating and terminating at the perimeter and inner annulus 
respectively.  The critical Reynolds number at which the spirals form agrees well with the 
comparable formation of spiral waves on the NASA-LMT resulting from azimuthal air flow over 
the rotating mirror. Rotation: CCW 
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rotating disk covered with an impressionable china clay material. In this example, the 

mechanism is thought to be purely rotational vortices in the air above the disk. The spiral 

pattern observed in the LMT may similarly result from vortices in the air alone impinging 

on the Hg surface or the Hg may also possess vorticity (the latter is discounted below). 

The spiral pattern as observed by Gregory and the theoretical cross-section of the 

vorticies which may reside in the boundary layer above the spinning disk are shown in 

Figure III.E.2-3. 

The water tank experiments as well as similar experiments performed by Tatro 

and Mollo-Christensen (1967) using only air as a medium yielded a set of criteria for the 

onset of the instability. Following their analysis and that of Greenspan, we must first 

characterize the boundary layer thickness. This was first done by Ekman (Greenspan 

1968) who found: 

 

Ω
=⋅= νδ EL         (III.E.2a) 

 

Where: 

δ  =  Boundary layer thickness 

 E = Ekman number 

ν  =  kinematic viscosity  (dynamic viscosity/density)  

   (0.0012 sec2cm for Hg  and 0.150 sec2cm for air at 20 C0 ) 

Ω  = angular velocity of the system (1.043 radians/sec for the NASA-LMT) 
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                                      Spiral Waves on a High-speed Rotating Disk 

        
Figure III.E.2-3. Gregory et al. (1955) demonstrated the formation of horizontal roll vorticies in 
the boundary layer of air above a rotating disk. In this example, the 30 cm diameter disk with an 
impressionable surface was rotating at 335 radians/sec. Three distinct zones of flow are visible: 
Laminar (0<r<8.9 cm), Vorticity (8.9<r<11 cm), and Turbulent (11<r cm). The Reynolds number 
(Re) for the onset of vorticity is higher than for the LMT spirals, but this may be due to increased 
coupling between the air-Hg interface versus the air-china clay interface in this experiment.  The 
lower figure shows the cross-section of the air boundary layer vorticity as derived analytically by 
Gregory et al. The disk surface is at z=0. This cannot be an exact analog to the LMT spirals 
because these spirals are logarithmic and the LMT spirals are linear. Rotation: CCW 



     
 

                 139 

L =  characteristic length of the system 

 

The Ekman number is a gross measure of the relative importance of the viscous and 

Coriolis forces within the rotating system. It is also the inverse Reynolds number ( ER ) 

for the global rotation:  

 

ν

2LRE
Ω=            (III.E.2b) 

 

Furthermore we can define a Rossby (ε ) number characterizing the ratio of the 

convective acceleration to the Coriolis force. This gives an estimate of the importance of 

non-linear terms: 

 

L
U
Ω

=ε          (III.E.2c) 

 

Where: 

U = the relative velocity of a particular motion (U = 0 for solid body rotation) 

 

For the case of the water and air tanks, the Rossby and Reynolds numbers were defined to 

characterize the relative azimuthal flow ( φV ) induced in the boundary layer by the source 

and sink flows. Thus: 
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L
V
Ω

= φε          and        
ν

δ φV
RE

⋅
=       (III.E.2d) 

 

 Using a hot wire anemometer to measure δ  and φV , it was determined 

empirically from the Faller and Kaylor source and sink water tank experiments that the 

boundary layer became unstable when the Reynolds number exceeded a critical value 

given by: 

 

ε⋅+= 66.35.124
CRITER        (III.E.2e) 

 

To see if the LMT satisfies this criteria, first consider the Hg fluid alone. At 20 C0  the 

kinematic viscosity of Hg is 0.0012 sec2cm . The characteristic scale of the LMT system 

is taken as the mirror radius of 150 cm and the angular velocity ( Ω ) is 1.043 rad/sec. 

Substituting into III.E.2a yields an Ekman boundary layer thickness (δ ) of 0.339 mm. 

Now there are two plausible sources for Hg motion relative to the global angular velocity 

of the LMT system. The motion could arise from infinitesimal angular velocity 

instabilities caused by wind and convective air currents as discussed in the previous 

section (III.D). The relative motion could also arise from drag induced on the Hg at the 

Hg-air interface. Experiments performed at NASA-JSC and NODO wherein a marker 

was placed on the Hg surface, indicated no discernable relative motion of the Hg surface 

with respect to the mirror container even after several weeks of observation. Thus the Hg  



     
 

     141 

is essentially in solid body rotation implying φV  is either zero or exceedingly small and 

therefore the Hg alone cannot satisfy the critical Reynolds number criteria. Thus it seems 

plausible that the Hg boundary layer is stable and there is no vorticity within the Hg fluid 

itself.  

When considering the air at the Hg-air interface, a different result is obtained. At 

20 C0  the kinematic viscosity of air is 0.150 sec2cm . The characteristic scale and 

angular velocity of the Hg-air interface is essentially the same as for the Hg alone, thus 

from equation III.E.2a the air boundary layer thickness (δ ) is 3.79 mm. Assuming the 

airabove the mirror is essentially stationary prior to the onset of instability, the relative 

velocity of the air to the Hg surface is purely azimuthal and is related to the radial 

position (r) by simply: 

 

Ω= rVφ          (III.E.2f) 

 

Substituting into equation III.E.2d yields the following expression for the Reynolds 

number and Rossby number for the Hg-air interface: 

 

r
r

RE ⋅=
Ω⋅⋅

= 64.2
ν

δ
                  and                      

L
r=ε   (III.E.2g) 

 

Comparing this expression with equation III.E.2e, we find that the onset of instability 

( ER >
CRITER ) occurs when r > 47.6 cm corresponding to an azimuthal linear velocity ( φV ) 
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of 49.64 cm/sec.  

This is a very interesting result, since the spiral wave pattern observed on the 

NASA liquid mirror appears to exist permanently for radii greater than 64.5 cm( φV = 67.3 

cm/sec) and only intermittently at radii interior to this value. Presumably the intermittent 

aspect may be due to brief wind gusts which temporarily cause φV to increase such that 

CRITER is exceeded for small radii. A very similar pattern is observed on other liquid 

mirrors as in the case of Borra’s laboratory 1.5 m f/2 mirror as shown in Figure III.E.2-4. 

The extraordinary agreement between the LMT results and the empirical 

observations made of the water and air tanks, is further supported by the observations of 

Gregory regarding spiral wave impressions made by air on rotating disks. Using the 

alternate Reynolds number definition given in equation III.E.2b, Gregory found that the 

spiral pattern existed for Reynolds numbers in the range: 55 1099.21078.1 xRx E ≤≤ . 

Below this range the air flow was laminar, above this range the flow was turbulent. 

Defined in this way, these values exceed the range of Reynolds numbers for the air above 

the NASA-LMT  which maximize at 51056.1 x  for the perimeter. The marginal 

disagreement may arise from the difference in interaction between the air-china clay 

interface in Gregory’s experiment and the air-Hg interface in the liquid mirror case. It is 

conceivable that there may be stronger coupling between the air and Hg causing the 

boundary layer instability and roll vorticies to occur at lower Reynolds numbers. It will be 

interesting to observe the spiral wave pattern on the 6m LZT. The maximum Reynolds 

number for air at the mirror perimeter will be 51043.4 x which could possibly place the air 
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                                          Spiral Waves on a 1.5 m f/2.0 Liquid Mirror  

                       
Figure III.E.2-4. Spiral waves observed on a 1.5 m f/2.0 liquid mirror in Borra’s laboratory. The 
mirror is rotating with angular velocity Ω =1.28 radians/sec. The form of these spirals appears 
identical to that of the NASA-LMT in the sense of a linear relationship between radial position 
and azimuthal angle. The spiral pattern appears to terminate at a radial position of approximately 
37.5 cm corresponding to a linear velocity of 48 cm/sec. This is close to what is observed on the 
NASA liquid mirror where the stable spiral pattern exists for r>64.5 cm corresponding to a 
minimum linear velocity of 67.3 cm/sec. Rotation: CW 
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flow in the turbulent domain. This may or may not have a more adverse effect on the 

mirror surface than the rotational vorticies.  

An additional piece of supporting evidence for the roll vorticity explanation of the 

spiral waves observed on liquid mirrors comes from Landau and Lifshitz (1959). They 

derive an expression for the stability of a tangential discontinuity between two fluids of 

different densities ( 21 , ρρ ) and surface tensions ( 21,αα ), moving relative to each other. 

In order for the flow to be laminar, in the case where 2α  is negligible, the following 

expression regarding the relative velocities (U) must hold: 
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ρρ
ρρρρα +−≤

gU       (III.E.2h) 

 

Substituting the known values for air and Hg into this equation, we obtain: 

sec/4.72 cmU ≤ . This is remarkably close to the approximately U ≤  67.3 cm/sec air-Hg 

velocity differential at which spiral waves only occur intermittently on the NASA-LMT. 

For air-Hg differentials above this value, where presumably the air flow is no longer 

laminar, the spiral waves are a permanent feature on the mirror.  

 

3)  Spiral Waves – Empirical Measurements 

 

Independent of the underlying cause of the spiral wave pattern, a quantitative 

description has been made of their properties. This assessment was made by measuring 

numerous images acquired both at the radius of curvature of the LMT when located at 
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NASA-JSC and at a position laterally displaced from the focal position at NODO. The 

Focault images were most useful in determining wavelengths and velocities, whereas the 

Ronchigrams enabled an approximate determination of the wave amplitudes. 

 

Radius of Curvature and Off-Axis Focault Results: 

 

The spiral wave parameters along with a comparison of the dispersion relation 

predictions of Hickson and Landau and Lifshitz are listed in Table III.E.3-1. Figures 

III.E.3-1 through 6 show some of the images from which the parameters were derived. It 

is evident from the table that the spiral waves (within the indicated accuracy of the 

measurements) appear to have a constant frequency (Column C) independent of the 

measured wavelength (Column B). This implies that the group velocity is zero and the 

measured velocity is purely phase velocity. Therefore the spiral pattern consists of 

stationary waves. Furthermore, the wavelength and frequency dependence does not follow 

either the Landau and Lifshitz or the Hickson dispersion relations. These two factors lend 

further support in favor of the argument that the spiral pattern is induced by vorticity in 

the air above the mirror and is not caused by gravity or capillary waves propagating on 

the rotating mirror surface. The same is not true of the concentric waves as discussed in 

the next section. It is interesting to note from the figures in column G that the azimuthal 

velocity of the spiral wave pattern is less than the azimuthal velocity of the liquid mirror 

at the same measured locations. Thus the spiral wave pattern rotates at an angular velocity 

slightly inferior to the mirror rotational velocity. The magnitude of the inferior rotation 



     
 

Table III.E.3-1. Parameters for Spiral Waves Observed on the NASA-LMT 

Table III.E.3-1. The measured parameters for the spiral waves observed on the NASA-LMT and a comparison with the dispersion relation 
predictions of both Landau and Lifshitz and Hickson. The parameters are based on images of the liquid mirror acquired at the radius of 
curvature under point source illumination at NASA-JSC .The Hg layer thickness was 2.25 mm (now 1.61 mm). The apparent frequency of the 
waves is independent of wavelength indicating stationary behavior.  
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             NASA-LMT @ JSC: Spiral Wave Motion at r = 115 cm 

        
Figure III.E.3-1. Two video frames of the NASA liquid mirror acquired under point-source 
illumination at the radius of curvature. The red arrows indicate a reference point on the mirror 
surface (r=115 cm) against which the spiral wave motion was measured. The frames are 
separated by 0.2 seconds (6 video frames) in which time the spiral wave-front moved 1 
wavelength (2 cm) implying a frequency of 5 Hz. Rotation: CCW 
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             NASA-LMT @ JSC: Spiral Wave Motion at r = 143 cm 

      
Figure III.E.3-2. Two video frames of the NASA liquid mirror acquired under point-source 
illumination at the radius of curvature. The red arrows indicate a reference point on the mirror 
surface (r=143 cm) against which the spiral wave motion was measured. The frames are 
separated by 0.067 seconds (2 video frames) in which time the spiral wave front moved 1/3 
wavelength (4.75/3 cm) implying a frequency of 5 Hz. (Continued in the next figure.) 
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             NASA-LMT @ JSC: Spiral Wave Motion at r = 143 cm 

     
Figure III.E.3-3. Continuation from the previous figure. The red arrows indicate a reference point 
on the mirror surface (r=143 cm) against which the spiral wave motion was measured. The 
frames are separated from the previous suite and from each other by 0.067 seconds (2 video 
frames). The spiral wave front moved 1 wavelength (4.75 cm) over the complete 4 frame (0.2 
second) sequence implying a frequency of 5 Hz.  Rotation: CCW 
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    NASA-LMT @ NODO: Spiral and Concentric Waves Near Mirror Perimeter

  
Figure III.E.3-4. Time series of images acquired approximately 3 degrees off-axis with an image-
intensified video camera laterally displaced from the focal position at NODO. The sequence 
demonstrates the inward radial motion (- RV ) of a spiral wave front ( ≅λ 6 cm) indicated by the 
red arrow. These waves are possibly induced by airflow over the rotating mirror surface. 
Concentric vibration-induced waves emanating from the mirror perimeter are also visible. 
(Frames separated by 0.1 sec; Rot: CW)   
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              NASA-LMT @ NODO: Spiral and Concentric Waves Near Mirror Perimeter      

    
Figure III.E.3-5. Time series of images acquired off-axis at NODO demonstrating a spiral wave 
front ( ≅λ 6 cm). These waves are possibly induced by airflow over the rotating mirror surface. 
(Frames separated by 0.1 seconds; Rotation: CW) 
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            NASA-LMT @ NODO: Spiral and Concentric Waves Near Mirror Perimeter 

      
Figure III.E.3-6. Time series of off-axis images demonstrating the inward radial motion of spiral 
surface waves ( ≅λ 2cm). The motion of the portion of a single wave front is indicated (red 
arrow). The wave moves inward relative to a small hole (dark) in the Hg surface layer.  (Frames 
separated by 0.1 seconds; Rotation: CW) 



 

                     153 

maximizes at the mirror perimeter and minimizes at the mirror’s central hub where the 

wave front is purely azimuthal and the intermittent spiral pattern is thereby essentially co-

rotating. Borra has observed similar spiral patterns rotating slower than his laboratory 

liquid mirrors. 

Figure III.E.3-7 shows the form and extent of both the permanent and transitory (r 

< 64.5 cm) spirals. The spiral wave front radial position (r) depends linearly on azimuthal 

angle (φ ) and thus the angle between the azimuth vector and the wave front 

(tangentialangle) is not constant. This is similar to the wave tank results, but is in contrast 

to the logarithmic spirals observed by Gregory et al (1955). The radial extent of the 

spirals observed on the rotating disk may not be sufficient to differentiate between 

logarithmic and linear spirals, hence a possible explanation for the disparity. As also 

indicated on the graph, the LMT spirals are governed by the following relations: 
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Where: 

 

r  =  the radial position of the spiral wave front (cm) 

φ   =  azimuthal angle (radians)   

α  =  the angle between the azimuth vector and the wave front 
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                     NASA-LMT: Spiral Wave Front 

 
Figure III.E.3-7. The linear form of the spiral waves observed on the Hg surface of the NASA-
LMT. The tangential angle (the angle between the wave front and the azimuth vector) varies 
from 26.5 degrees at the mirror perimeter to 90 degrees at the mirror’s center. Waves (pink) 
extending to the mirror center (r < 64.5 cm) are seen only very occasionally and are presumed 
due to stray currents of air impacting the mirror and temporarily exceeding the critical Reynolds 
number for the onset of vorticity. (Rotation: CW) 
 
 
 



 

       155 

Ronchigram Results: 

 

By a simple geometric argument, it was possible to obtain an estimate of the spiral 

wave amplitude at several positions near the mirror perimeter. The estimates are based on 

a series of images acquired at the NASA-LMT radius of curvature (RC) with a Ronchi 

grating (20 lines/cm) in place. If the assumption is made that an individual spiral 

waveform is approximately triangular in shape and that the wave amplitude (A) is small 

relative to the wavelength( λ ), (A<< λ ), then the linear peak-to-valley displacement in 

thegrating lines ( VPLD − ) caused by a passing wave is related to the amplitude and 

wavelength of the wave by the expression: 

 

4
λ⋅== −

RC
LDAudeWaveAmplit VP       (III.E.3b) 

 

This simply states that a tilted planar wave front will displace the observed grating lines 

by an amount related to its amplitude and wavelength. 

The calculated values based upon the Ronchigrams shown in Figure III.E.3-8 are 

tabulated in Table III.E.3-2. The indicated positions (colored arrows) are shown in the 

table. The average of the measured amplitude values, independent of radial position, is 

241 nm. This is 0.48 waves of green light (0.48 λ @ λ = 0.5 um). Thus these spiral waves 

have an amplitude comparable to those the aberrations induced by the Coriolis and tilt 

effects discussed in the first part of this Chapter. 
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                              NASA-LMT @ JSC: Ronchigrams of the 3.0 m mirror 

                      
Figure III.E.3-8. Ronchigrams of the NASA liquid mirror acquired at the radius of curvature 
under point-source illumination with a 20 line/cm Ronchi grating. The arrows indicate reference 
points at which the spiral wave amplitudes were measured using the simple geometric relation 
described in the text. As an example, at the pink arrow (r = 133 cm) the spiral wave has displaced 
the grating lines by 1/2 their separation of 0.05 cm. At the 900 cm radius of curvature, the wave 
front (if triangular) must be tilted by 0.000007 radians to cause this displacement. By simple 
geometry, the measured wavelength of 3.5 cm implies a wave amplitude of 243 nm. (Rot: CCW) 
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Table III.E.3-2 
 

 

 

 

 

 
 
 
4) Concentric Waves – Empirical Measurements 

 

Table III.E.4-1 lists the concentric wave parameters along with a comparison of 

the dispersion relation predictions of Hickson and Landau and Lifshitz. Figures III.E.4-1 

through 4 show some of the images from which the parameters were derived. 

 Two types of concentric waves have been observed on the surface of the NASA 

liquid mirror. They are differentiated by wavelength and oscillating frequency. The short 

wavelength (SW; ≅λ 0.68 cm) concentric waves were observed at NASA-JSC but not at 

NODO. They existed at larger mirror radii (116 < r <150 cm) and emanated from the 

mirror perimeter traveling radially inward at approximately 30.5 cm/sec with a frequency 

of approximately 45 Hz. From close inspection of the video data acquired at the radius of 

curvature under point-source illumination of the mirror, these short wavelength waves 

appear to dissipate before reaching the inner regions of the mirror (r < 116 cm). Since the 

short wavelength waves do not appear in the off-axis images acquired at NODO, it is 

assumed that they were caused by environmental forcing specific to the NASA-JSC 
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                                            Table III.E.4-1. Parameters for Concentric Waves Observed on the NASA-LMT 

Table III.E.4-1. Measured parameters for concentric waves observed on the NASA-LMT and a comparison with the dispersion relations of both 
Landau and Lifshitz and Hickson. The higher radial position (r>75 cm) parameters are based on images of the liquid mirror at JSC with a 2.25 
mm Hg layer. The smaller radial position (r<29 cm) values are based on NODO measurements with a 1.61 mm Hg layer. The frequency of the 
waves appear to be independent of wavelength (stationary behavior), but accuracy is insufficient to make a determination (indeterminant = ID). 
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              NASA-LMT @ JSC: Short Wavelength Concentric Motion at r = 150 cm 

          
Figure III.E.4-1. Two video frames of the NASA liquid mirror acquired under point-source 
illumination at the radius of curvature. The red arrows indicate two positions (r=150 and 147.5 
cm) on a short wavelength concentric wave against which the wave motion was measured. The 
frames are separated by 0.067 seconds (2 video frames) in which time the concentric wave front 
moved radially inward 2.04 cm (3 wavelengths) implying a frequency of 45 Hz. (Rot: CCW) 
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            NASA-LMT @ JSC: Long Wavelength Concentric Motion at r = 148.5 cm 

          
Figure IIIE.4-2. Two video frames of the NASA liquid mirror acquired under point-source 
illumination at the radius of curvature. The red arrows indicate two positions (r=148.5 and 146 
cm) on a long wavelength concentric wave against which the wave motion was measured. The 
frames are separated by 0.067 seconds (2 video frames) in which time the concentric wave front 
moved radially inward 2.0 cm (1 wavelengths) implying a frequency of 15 Hz. (Rot: CCW) 
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              NASA-LMT @ JSC: Long and Short Wavelength Concentric Waves 

      
Figure III.E.4-3. An illustration of the two types of concentric waves observed at larger radii (r 
>75 cm) on the NASA-LMT. The upper frame shows the long wavelength concentric waves 
( ≅λ 1.36 to 1.7 cm; 52.5 Hz) and the lower frame shows the short wavelength concentric waves 
( ≅λ 0.68 cm; 21 Hz). Both images were extracted from video frames acquired under point-
source illumination at the radius of curvature. (Rot: CCW) 
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                 NASA-LMT @ NODO: Region Surrounding the Mirror Central Hub    

         
Figure III.E.4-4. Time series of images demonstrating concentric surface waves ( ≅λ 1.15 to 1.7 
cm) emanating from the mirror central hub. The region surrounding the mirror central hub is 
made visible by point source illumination from a bright off-axis star. The shadow of the prime 
focus (PF) assembly is also visible as well as waves of heated air streaming from the prime focus 
mounted CCD controller (radial streamers near hub). The large scale (~10 cm diameter) dark and 
light mottling over the mirror surface results from wave front errors induced by atmospheric 
seeing cells of diameter Ro.  (Frames are separated by 0.3 seconds; Rotation: CW)   
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installation - perhaps due to the transmission of silo wind loads to the mirror pier through 

the ground or building footer.  This idea is supported by laboratory notes indicating that 

the short wavelength waves were more prominent when the exterior winds were strong. 

Long wavelength (LW) concentric waves (1.15 < λ < 2.0 cm) have been observed 

at both the JSC and NODO installations. These waves emanate from both the mirror 

perimeter and the central hub. They have a frequency of approximately 15 Hz and may 

possibly be stationary waves with zero group velocity.  Measurements are not sufficiently 

accurate to make a definite determination however. They do not correlate well with either 

the Landau and Lifshitz or the Hickson dispersion relations, although for some 

wavelengths the frequency and phase velocity agree. The source of these waves is 

probably related to the natural oscillation frequency of the mirror container which 

Hickson (1993) has shown is 18 Hz for a 2.7 meter diameter mirror containing a 2mm Hg 

layer and 27 Hz for an empty container. The 3 m NASA mirror is of almost identical 

construction and probably has a comparable resonant frequency near 18 Hz with Hg 

layers of either 1.61 mm (NODO) or 2.25 mm (JSC). The postulate that mirror resonance 

is the source of the concentric waves is supported by the identical frequencies observed 

both at NODO and JSC despite significant differences in the mirror infrastructure and 

pier construction. The NODO pier, for example, has a natural resonant frequency of 

between 10 and 15 Hz (Hickson PC), whereas the JSC pier has a resonant frequency of 

greater than 1000 Hz. It is unlikely, however, that the NODO pier is the source of the 

concentric waves since the observed wave frequencies at NODO and JSC are identical 

within the limits of measurement. 
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The excitation of mirror oscillations could arise from several sources. It has been 

correlated with wind loading on the observatory structure via an increase in the amplitude 

and extent of the concentric waves during windy conditions at both NODO and JSC. The 

JSC observations were made with the observatory closed to preventing direct contact of 

moving air with the mirror which can create severe turbulence (as shown in Figure 

III.E.4-5).  The NODO observations were also made with the observatory closed, but the 

waves were visible with the unaided eye on the mirror surface. Each exterior gust of wind 

generated concentric ripples visible at the mirror perimeter, despite the fact that no wind 

actually impacted the mirror surface. In both cases, the wind load on the facility is 

transmitted through the common ground between observatory and pier. Activities within 

the building itself can also induce mirror vibrations. At NODO, vibrations from the first 

floor mechanical room which contains ventilation systems, and a portion of the air 

bearing compressed air system, may be transmitted to the pier through the ground. The 

brush-less DC direct-drive motor which energizes each of 12 poles with a sinusoidal 

voltage at 2 Hz is another possible, though unlikely source of excitation. F-noise (1/f) in 

the bearing air film has been excluded as a source due to the small amplitude (A<5 nm; 

Dahl PC). 

 

5) Transitory Waves – Impact Induced 

 

The mirror is occasionally subject to impact from an insect or a piece of debris. If 

the mirror and Hg are in rotational equilibrium, this has the effect of creating a small 
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NASA-LMT @ JSC: Mirror Surface Turbulence  

      
Figure III.E.4-5. Turbulence generated on the mirror Hg surface while impacted directly by a 
flow of air. This problem is easily mitigated by proper baffling and shielding of the primary 
mirror. (Rotation: CCW) 
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circular tear in the Hg surface which remains until the mirror is stopped and restarted. 

Since in equilibrium there is no flow of Hg relative to the mirror surface, the created hole 

has a stable size (usually < 1 cm diameter).  If the impact occurs prior to mirror 

stabilization (Chapter IV), then the resultant tear in the Hg surface will grow rapidly in 

size and the mirror will need to be restarted before it becomes unbalanced. Figure III.E.5-

1 shows the expansion of a circular wave-front on the NASA-LMT after a piece of debris 

has impacted the mirror and Table III.E.5-1 lists the parameters associated with this wave 

along with a comparison with the dispersion relation predictions. The observed group 

velocity matches the Landau and Lifshitz prediction with the caveat that the correlation 

could be coincidental since only a single series of measurements (limited to the 

wavelength and wave-front expansion velocity) were acquired. 

 

 

              Table III.E.5-1. Parameters for Impact Induced Expanding Wave Front 
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     NASA-LMT @ JSC: Post-impact Circular Wave Propagation 

  
Figure III.E.5-1.  Propagation of a wave resulting from an impact to the mirror by a piece of 
debris. The circular wave front has ≅λ  1.25cm and moves radially outward at ~20 cm/sec.   
Frames are separated by 0.067 seconds. (Rotation: CCW) 
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6) Wave Damping – 
 

Although it is difficult to eliminate waves on the surface of a liquid mirror, they 

can be partially mitigated by using thinner Hg layers. To see why this is true, we begin 

with the expression for the damping coefficient of a fluid wave (Landau and Lifshitz 

1959): 

 

teAAudeWaveAmplit γ−== 0       (III.E.6a) 

 

Where: 

 Damping coefficient  = 22 k⋅⋅= νγ  

 ν  =  kinematic viscosity  (0.0012 sec2cm cm/sec for Hg) 

  k   = wave number 

 

The Hg layer thickness and wave number are related to each other and the angular 

wave frequency by the dispersion relation. If we hold the angular wave frequency 

constant in the Landau and Lifshitz dispersion relation (Equation III.E.1a), then as the Hg 

layer thickness (h) decreases, the wave number (k) must increase. As an example we 

consider the NASA-LMT with Hg layer thicknesses of 0.5, 1.0, 1.5, and 2.0 mm and a 

wave with a frequency of 15 Hz (at or near the mirror resonant frequency). Using the 

Landau and Lifshitz dispersion relation and solving numerically for k yields the damping 

coefficients shown in Table III.E.6-1.  
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              Table III.E.6-1. Damping Coefficient and Hg Layer Thickness 

 
 
 
 
 
 
 

 

  

 

 

It is apparent that the characteristic timescale for wave damping ( 1−= γct ) 

decreases as roughly the square root of the layer thickness ( h ) for constant frequency. 

Thus thinner layer will damp waves more effectively. 

Using the Hickson dispersion relation (III.E.1d) we can demonstrate analytically 

the dependence of the damping coefficient on both Hg layer thickness and angular 

frequency.  Using the quadratic formula to solve for wave number (k) and substituting 

into the expression for the damping coefficient, we obtain: 

 

22 k⋅⋅= νγ = 







−+Ω− gg

h H
222 )164(1 ααϖ

ρα
νρ    (III.E.6a) 

 

Thus for 22 4Ω>Hϖ  (which is always true for waves observed on the NASA LMT), we 

Wave Frequency: 

15 Hz  (94.2 rad/s) 

                   Mirror Hg Thickness h (mm) 

       0.5              1.0               1.5                2.0 

)( 1−cmk        7.73      6.41     5.80      5.44 

)(cmλ       0.81      0.98    1.08      1.15 

22 k⋅⋅= νγ )(sec 1−       0.143     0.0986    0.0807    0.0710 

(sec)ct        7.0     10.1    12.4      14.1 
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have wave damping with the damping coefficient increasing for both increasing angular 

wave frequency and for decreasing Hg layer thickness. As verification, this expression 

returns similar values to those listed in Table III.E.6-1. 

 Borra has emphasized repeatedly the importance of using thin Hg layers to 

mitigate the adverse effects of waves (Borra et al. 1992, Girard and Borra 1997). He has 

established layers as thin as 0.5 mm. At the NASA-LMT we operate with as thin a layer 

as possible (1.61 mm) before imperfections on the mirror container surface make 

establishing the Hg layer extremely difficult. Layers which are too thin can be subject to 

print-through wherein mirror container surface features become visible on the Hg upper 

surface. Hickson (PC) has shown that defects which protrude more than 10% into the Hg 

layer will be visible on the Hg surface. This may already be a problem at the NASA-LMT 

where spin-casting defects may be visible on the Hg surface as discussed in Chapter V. 

 It is important to note that because the mercury surface rapidly oxidizes (Chapter 

IV), the actual wave damping coefficients are greater (shorter damping timescales) than 

those derived here for an un-oxidized Hg surface. Since Tremblay and Borra (2000) have 

observed a dramatic increase in wave damping with moderate reductions in layer 

thickness, the trend toward greater damping with thinner layers may be enhanced by the 

oxide formation as the oxide’s damping characteristics disproportionately dominate fluid 

thickness effects for progressively thinner layers. 
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