
Errata and clarifications by Chapter:

Notation

Throughout the book, we have used the handy notation “prob(x)” to denote either a
probability or a probability density. If we draw a datum X from some distribution with
a density g(x), what we conventionally mean is that the answer lies in some small range
X to X + dX, and the probability of this event is g(X)dX.
As an example, suppose our density depended on some continuous parameter α, with
prior p(α) (so the probability of lying in α to α + dα is p(α)). In full, Bayes’ theorem
would read

prob(α|X) =
prob(X|α)prob(α)

prob(X)

=
g(X|α)dX p(α)dα∫
g(X|α)dX p(α) dα

and the differentials in X cancel out. If we write the posterior density as g ′(α|X) then
prob(α|X) = g′(α|X) dα and we just have

g′(α|X) ∝ g(X|α)p(α)

which is how we often express Bayes’ Theorem explicitly in terms of densities.

Chapter 5

In ¶5.2.3 (Example) an important point has been glossed over in the interests of space
- the normalization of the priors. Essentially this Bayesian model comparison technique
uses a ratio which involves likelihoods (where the data enter) and priors on the parameters.
For instance: if we use a prior on the mean µ which is uniform from −µ0 to µ1, then the
prior probability distribution in full is

prob(µ) =
1

µ1 + µ0

.

The likelihood associated with this model is L(data|µ) and so the numerator in the Bayes
factor is

∫ µ1

−µ0

dµ
1

µ1 + µ0

L(data|µ).

If we were making a model comparison with some other sort of distribution, characterized
by a location parameter λ, then the denominator in the Bayes factor would look like
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∫ λ1

−λ0

dλ
1

λ1 + λ0

L′(data|λ).

Strictly the posterior odds will depend on what we have chosen for µ0, µ1, λ0 and λ1. In
many useful cases, however, the likelihood terms are so peaked that we can extend the
integrals from −∞ to ∞, and further our prior information may be so weak that we are
happy to accept

λ1 + λ0

µ1 + µ0

→ 1

which gets back to the treatment given in the book.
There are cases where using improper priors can cause trouble and some famous contro-
versies have revolved around this point (Jaynes 2003, Chapter 15). It is as well to be
explicit about what we are doing with priors. Jaynes says “...For many years, the present
writer was caught out in this error just as badly as anyone else, because Bayesian cal-
culations with improper priors continued to give just the reasonable and clearly correct
results that common sense demanded.”
To some extent this is an academic debate which arises because we are dealing in rather
abstract examples. In real-world problems we are rarely in the state of virginal ignorance
that would encourage us to use improper priors – we always know more than that!
An interesting slant on these kind of problems arises when we treat the number of pa-
rameters as itself something we want to estimate – this method applies where we want
to decompose some data into a mixture of underlying distributions. See Richardson, S.
and Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number of
components (with discussion). Journal of the Royal Statistical Society, Series B, 59,
731–92

Chapter 6

¶6.3 and ¶6.7 - same comments apply as for ¶5.2.3
Equation 6.18 – should have (b − a) in the numerator of the r.h.s.
¶6.5.1, first example - exponent on last term should be negative, i.e. −1/1.5
¶6.5.2 There are some very useful notes on MCMC methods at
http://www.maths.soton.ac.uk/staff/sahu/utrecht and
http://www.stats.bris.ac.uk/ peter/papers/semstat2.ps.
¶6.6 The discussion of the bootstrap should make one point clearer – the data have to
be random. For instance, if we have a set of (x, y) pairs where we have fixed each X by
design, and measured a Y with some error, then the data are not random in this sense.
To evaluate the errors in a model in this case, use Monte Carlo and your knowledge of the
error distribution. The bootstrap applies in the case where you have a randomly-selected
set of cases and you measure the (X,Y ) with small errors. So the basic assumption is that
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the data are drawn from some bivariate distribution of x and y. This is the case in the
example in the nice Diaconis & Efron paper, where they are interested in the correlation
of two types of scores that were obtained by a sample of students. It wouldn’t necessarily

be the case if you choose Xi and measure Yi, unless you know that you have chosen
representative Xi.

Chapter 8

¶8.2 We did not mention anything about tapering data; this is not really a statistical
issue but it is very important. A time series or spectrum should not start or end abruptly
at some finite value, or the implied sharp edges will appear as spurious sidelobes on any
features in the spectrum. A fundamental paper on optimum tapering is D.J. Thomson,
1982. Proc IEEE, 70, 1055 “Spectrum estimation and harmonic analysis”. A more recent
paper on this topic is Reidel & Sidorenko, 1995, IEEE Trans Sig Proc, 43, 188 “Minimum
bias multiple taper spectral estimation”.

Chapter 9

Exercise 9.4 - should refer to “w3” not “w4”.

3


