10.5 Surface density changes and Counts-in-Cells

(a) Magnitude of offset in w(f). You will need to start with the uniformly random
data set over the area 0° < o < 60°,—20° < ¢ < 20° specifically provided for this
example.

The example suggests going to circles as small as 0.03°in radius; a rough calculation
shows that for a surface density of 100000/(40 x 60) a 40 per square degree, the average
number is 0.03 points, an unrewarding number on which to check Poisson statistics.
Stick with the range 0.3° to 3° radii, with mean numbers thus running from 3 to 300
per cell.

Setting up the grid of circles can consist simply of the grid of circle centres; each point
in the sky distribution can be tested to see whether it falls within the given cell radius
of each centre. There are efficient and other ways of doing this.

You will find the distributions of cell numbers for a given cell size to be indistinguish-
able from Poisson distributions, as they should be. Figure 1 shows the distributions for
10 logarithmically-spaced cell sizes, diameters 0.3° to 3°, on a log-log plot. The Pois-
son distributions computed from the mean number of points per cell-size are shown
superposed.
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Figure 1: Number of cells versus number of objects per cell, the counts-in-cells for the
uniform toy sky with 100000 points provided in the data set for this example. There
are 10 cell sets, with cell diameters evenly distributed logarithmically from 0.3° (the
left-most distribution) to 3° (far right). Cells are independent. The curves represent
Poisson distributions with means given by the average number of points per cell in
each cell set.

(As an aside, note the difficulty of a straight-out computation of the Poisson distribu-
tion for observed number k and mean number pu:

e Huk

£l ) = (1)
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For values of ;1 > 10 this innocuous-looking sum soon runs any computer out of sig-
nificant digits. You need recourse to an identity: that of the cumulative Poisson
distribution with the second incomplete Gamma function (), the complement of the
first incomplete Gamma function P:

Fu(< k) = Q(k, ) = 1 — Pk, 1), whereP(k, i) = %k) /M T etk (2)

and the (complete) Gamma function is

o
(k) = / 1D ety (3)

0
See Numerical Recipes; routines are available for incomplete Gamma functions in Nu-
merical Recipes and elsewhere.)

The variance statistic is (L) - WD)
pa(L) — N(L
y(L) = 12D — V(L) (4)
N
with the second moment po = (N — N)2. When this statistic is computed and plotted
for the random-sky data set of this example, the result is shown by the crosses in

Figure 2.
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Figure 2: The variance statistic y(L) as a function of cell diameter L, for a 10 cell sets

with diameters logarithmically spaced from 0.3° to 3°. The crosses are y(L) determi-

nations for the toy random sky data set of this example. The dots are for the toy sky

of examplen which there is a step of 20 per cent in surface density between the

northern and southern halves of the field.
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The errors on y(L) are given by
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where N, is the number of independent cells. (Verify this from standard error analysis
- see section 3.3.) As should be the case for a sky of uniformly-distributed independent
random points, no significant offset in the set of values of y(L) is evident in Figure 2.

(b) Carrying out the same exercise for the sky data-set of examplives the points in
Figure 2 designated by solid dots. Now there is an offset consistent with the prediction
of Ay(L) =0.01.

From the text: ‘Systematic surface density gradients spuriously offset the counts-in-
cells variance: a spread in the mean surface density across the cells will inevitably
broaden the overall probability distribution P(NN), which is constructed from fluctua-
tions about those means. For a cell of area S at local surface density ¢, < N >= ¢S and
< N? >= ¢S +¢25? for no clustering; averaging over many cells produces < N >=¢S
and < N2 >= ¢S + ¢252. It follows that the variance statistic y (equation 4) is offset
by

§2
< Ay>=— —1, 6
Y>= e (6)
precisely the same offset as that experienced by w(f) in the presence of surface gradi-
ents.’
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Figure 3: Number of cells versus number of objects per cell, the counts-in-cells for
the toy sky with 100000 points having a discontinuity in surface density, the data set
of example|10.4.)| The same 10 cell-sets were used as for the uniform sky calculation
of Figure 1, cell diameters evenly distributed logarithmically from 0.3° (the left-most
distribution) to 3° (far right). The curves again represent Poisson distributions with
means given by the average number of points per cell in each cell-set.

Thus as for the offset in w(f) of exampld10.4,ith a fractional offset in surface density
of €, we get for the overdensity 62

= (/2 + 5(~€/2) = /4 (7)
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so that € = 0.2 gives the Ay(L) = 0.01 shown as the red line in Figure 2.

Figure 3 shows the distributions of counts-in-cells for this non-uniform sky using the
same sets of independent cells as for the uniform sky c-in-c. The distributions still look
Poissonian for the most part, but are they are noticeably more ragged with greater
scatter (=> increased variance) than those of Figure 1. This is quantified by the offset
in y(L) apparent in Figure 2.

As in example|l 0.4,linvestigate the effects of surface-density changes on scales smaller
than that of the example, as well as the effects of large-scale gradients rather than
steps. Does c-in-c methodology offer any obvious advantage in these issues?
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