
2.11 Toy universes

Let us consider a second universe as well as the one sugested. The second one will have
luminosities distributed according to a power law of slope -3, and we observe it with a
telescope of sensitivity limit 200 flux units..

We assume a simple Euclidean universe in which the maximum radius Rmax = 1.0,
total volume 4π/3, and of course we’re at the centre.

First step: distribute say 106 sources uniformly throughout this sphere. This does
NOT mean uniformly in radius! For equal values of ∆r, the volume shells increase
with radius as r2dr. Hence, following the prescription of Equation (2.16), if rani is a
random variable uniformly distributed between zero and unity, we can get values of ri

to provide the right radial distribution from

ri = ran1/3

i

and these values will run from 0 to 1.0. We can check our derived radii in a number
of ways, for example by plotting a histogram of source densities in volume elements
(4π/3)[R3

2 − R3
1] corresponding to equal increments in R as shown in Figure 1.

Figure 1: Left: Space density as a function of radius. Error bars correspond to
√

N ;
the ‘near’ volume elements are much the smaller, contain far fewer objects than the
‘far’ ones, and thus have larger error bars. The data are consistent with uniform space
density throughout our universe. Right: the two luminosity functions – 1st universe,
green histogram, all li = 10; 2nd universe, blue dots, li drawn from a l−3 distribution.

We can use the same values of ri for each universe. If we wish (as it’s our universe and
we’re at the centre), we can ascribe right ascensions and declinations (φi, θi) to each
‘galaxy’ as well, and use them to plot sky patches of ‘survey areas’, as shown in Figure
2.10.

The second step is to ascribe luminosities to our sources. The example suggests giving
them all an equal luminosity of li = 10 units and we do this for our 1st universe. For
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our 2nd universe, we ascribe luminosities according to a power law of slope -3. To do
this we call upon equation (2.16) again, and the result is

li = ran−1/2

i

with luminosities running from 1.0 to infinity, although numbers of course rapidly di-
minish with increasing luminosity. Figure 1 (right panel) shows a check that a selection
of 106 objects have luminosities distributed according to our two prescriptions.

Our task in making source counts for these two universes is now straightforward, easily
demonstrated with a piece of (readily translatable) Fortran code. For the first universe
(for which we have a telescope of flux sensitivity 0.1 ∗ 10 = 1.0), and using equal bins
of 0.05 in ∆(log10S):

do i=1,1000000
if(s(i).gt.(1.0))then !flux density limit imposed

index=20.*alog10(s(i))+1. !find which count bin flux belongs
icount(index)=icount(index)+1 !form histogram of count

endif
enddo

This gives us a histogram icount, which is the source count.

Our second universe follows the same coding, except that now we have decided on a
flux density limit of 200, so that ′′1.0′′ in the second line is replaced by ′′200.0′′.

The results for both universes are shown in Figure 2.

So are we done? In principle, but wait – here are three issues. (1) Why should the
slopes of the counts be the same for such different universes? (2) How did we get to
calculate the perfect fit lines in the source-count picture? And – most important of all
– (3) are these universes vaguely realistic?

The last issue first. We have an indication from Figure 1, right panel, that all is not
well with our simple model in which we assigned a single luminosity to all our objects.
A delta function for a luminosity function cannot be remotely realistic. We know that
at any wavelength there is always a spread, and that there are always fewer objects
of higher luminosities per unit volume. Even the power law is not ideal, although
it follows our general ideas of most luminosity functions. We could have improved
the realism with say a Schecter function (Section 3.4) if we were modelling a galaxy
universe.

If for our 2nd universe we plot luminosity against distance, and put in a survey flux
sensitivity limit, we end up with a sample of sources from our universe which roughly
follows a Hubble relation, as shown in the right panel of Figure 3. We can ‘observe’
only 1333 of the total of 106 objects in our universe. Inferring general properties
about the objects in our universe from a small sample of them is what we do, and
this diagram has the same general form as Figures 4.1 and 4.3. Thus we have a
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Figure 2: Source counts for our two universes. Green points: single-luminosity uni-
verse. Blue points, universe with luminosities distributed according to l−3. Error bars
correspond to

√
N errors where N is the number of fluxes in each bin.

toy universe here which is not totally unrealistic and from which we might hope to
make further modifications such as a Friedman geometry, a better luminosity function,
some observational uncertainty about our measurements, K-corrections, etc., to yield
a simulation which might be of some use to us.

The same cannot be said of our 1st universe. Its equivalent plot is shown in the left
panel of Figure 3. Our single luminosity assignment does not yield a Hubble diagram
or anything like it. Moreover, our chosen sensitivity imposes no cutoff; the faintest
object in our universe has a flux of 10, while our chosen sensitivity is 1.0. It is hardly
realistic to expect to see all objects in the universe!

Examine your chosen universe from more than one perspective to make sure that your
simulation bears some relation to reality.

The answers to questions (1) and (2) are mechanical, but bear comment. The first
question: for any luminosity, the number of sources visible above a flux density of S is
obtained by first calculating the volume out to which the objects can be seen and then

multiplying this by the source density within that volume. As S = L/R2, R =
√

L/S,
this volume is

Vi = (4π/3)(
√

Li/S)3

while the luminosity function gives us a space density ρi for each Li.

Thus for each luminosity

Ni(S) > ρiVi = CiS
−3/2.
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Figure 3: The luminosity (or power P) vs radial-distance plane. Left: 1st universe.
All objects have a luminosity of 10, and the flux cutoff for our telescope is assumed
as 0.1 × 10 = 1.0. Hence all objects in the universe are ‘visible’. Every tenth object
has been plotted; otherwise the dots would form a solid horizontal line. Right: 2nd
universe. The luminosities are distributed at random amongst the objects according
to a power law l−3. Our telescope is sensitive down to a flux of 200 units. All 106

objects are plotted as very faint dots except those above the sensitivity limit (the red
line) – the sample of 1333 objects we can ‘see’ in order to infer the properties of all
106 objects. The number density of faint dots in the figure gives rise to the apparent
continuum in the bottom right corner.

Adding this up for all Li:

N(> S) =
∑

CiS
−3/2

Thus it matters not whether we have one luminosity or a continuum of them described
by a luminosity function: in a Euclidean universe, N(> S) = KS−3/2. This not the
case in a Friedman geometry, because the relation between R and redshift z is not linear
(except at tiny z), so that the law is a curve, not a power-law, a different curve for each
luminosity that is always (for a uniformly filled universe) flatter than a −3/2 law. At
infinitely large flux densities however, the slopes at any luminosity are asymptotic to
−3/2. But by the time we get to anything like high enough fluxes, there are generally
too few objects to see the form of the source count, an example of cosmic variance
(Section 10.6).

As for the second question, consider our 1st universe, 106 sources each with li = 10.0.
We know our source-count law is N(> S) = K1S−1.5 and as our minimum flux is
Smin = 10.0, K1 = 106/10−1.5 = 3.16 · 107. We want the differential source count, i.e.
dN = −1.5 · 3.16 · 107S−2.5dS or dN = −4.74 · 107S−2.5dS. We have chosen to plot
in the conventional logarithmic form, in equal intervals of log10S, and remembering
that dS = S · d(logS)/(log10e), we get dN = 4.74 · 107 · S−1 · S−2.5d(log10S)/(log10e),
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or dN = 4.74 · 107 · S−1.5d(log10S)/0.434. This plot was made with equal intervals of
∆(log10) = 0.05, so that our final law is

∆N = 5.46 · 106 · S−1.5.

I have spelt things out, simply because there are numerous frustrating pitfalls with
power-law plots, as emphasized in the text. (Are you sure you’d have remembered
that factor of 1/log10e?)

It is left as an exercise to work out the corresponding law for the second (semi-realistic)
universe. Note that the key is to work out the normalization, first for the luminosity
function:

∫

∞

1

Cl−3dl = 106,

so that C = 2.0 · 106. Some further work, in steps of calculating first N(l, > S) and
then N(> S), will reveal the final law to be N(> S) = 4.0 · 106S−1.5 from which the
plot will turn out as

∆N = 4.0 · 106 · S−1.5 · 0.05/0.4343 .

The solid black lines in Figure 2 represent the two curves, of identical slope of course.
Note that our 1st universe has a higher count by far. This is because our steep lumi-
nosity function for the 2nd universe implies far fewer sources visible with luminosities
as high as 10.0. Note also that the sensitivity limit does not change the normalization
of the source count at all, because above the flux cutoff, we see the all the sources in
the universe. The only implication of the flux cutoff for the source count is to place a
lower limit on our plot, as shown in Figure 2 (2nd universe).

(Similar considerations will yield you the black line in Figure 1, right panel – note that
this plot is in units of equal ∆l.)

What the source count can contribute to our knowledge of the spatial distribution of
objects is revealed, to some extent at least, in Chapter 8.


