3.6 Robust Statistics

This can easily be done by Monte Carlo, but analytic calculations are also not difficult. Define the mixture by the distribution

$$
f(x)=\frac{e^{-\frac{x^{2}}{2}}(1-p)}{\sqrt{2 \pi}}+\frac{e^{-\frac{x^{2}}{18}} p}{3 \sqrt{2 \pi}} .
$$

The mean value

$$
\sqrt{\int_{-\infty}^{\infty} x^{2} f(x) d x}=\sqrt{1+8 p}
$$

and the mean deviation

$$
2 \int_{0}^{\infty} x f(x) d x=(1+2 p) \sqrt{\frac{2}{\pi}} .
$$

A robust width estimator (the interquartile mean c) satisfies

$$
\int_{-c}^{c} f(x) d x=\frac{1}{2}
$$

which gives the equation

$$
p \operatorname{Erf}\left[\frac{c}{3 \sqrt{2}}\right]+\operatorname{Erf}\left[\frac{c}{\sqrt{2}}\right]-p \operatorname{Erf}\left[\frac{c}{\sqrt{2}}\right]=\frac{1}{2}
$$

for c. This has to be solved numerically. The answers are graphed in Figure 1 as a function of p. It is clear that the robust measure is less sensitive to outliers.

Figure 1: The standard deviation (red), mean deviation (blue) and interquartile range (black) as a function of the outlier parameter p.

