3.1 Means and variances

The Poisson distribution has

The mean is therefore

and the last term sums to e*.

A similar argument works for the variance.

For a power law, the upper and lower limits matter; suppose they are b and a. Within
this range, the power law distribution is
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and the mean is
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which is quite a complicated expression. It becomes clearer in a few limits. If v = 3, for
instance, we have
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showing that the bottom end determines the mean. If we have v = 2, we can take limits
to get
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showing that both a and b matter here. If v — 1 we get
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and b dominates the mean.
The variance is intimidating;:
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Taking some limits, we find (as expected) that we must have v < —4 for the upper limit
not to dominate the variance; also, we must have v > —1/2 for the lower limit not to
matter.

The variance of a Cauchy distribution is simple by comparison.
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diverges linearly.



