4.3 Principal Component Analysis

With the kind permission of Paul Francis, this exercise (and indeed much of the de-
scription of PCA in Section 4.5) is taken from a beautiful little paper by Paul and
Bev Wills (Francis, P.J. and Wills, B.J., 1999, in ASP Conf. Ser. 162: Quasars and
Cosmology, p363) describing and illustrating exactly how PCA works.

The answer to the PCA analysis of the data is given in this paper as follows:

Table 3. Results of Eigenanalysis - The Principal Components®

PCl__PC2 PC3 PCA__ PCh

Eigenvalue 6.4506 2.8157 15879 06257 0.5698
Propartion D496 0217 0022 0MME 0044
Cuamulative 0404 0.713 0.83a 0.583 0.027
Variabie PCl  PC2 PCI  PC4__ PCH
log Lige 0.053 0535 =0.123 =002 =0.405
Oy 0205 =0.198 0079 0485 =—0.155
FWHM Hp =0.330 0.07T =0.357 =0.082 =0.141
Fell/HS 0341 ~-0.140 0.003 -=0487 -=0212
log EW [OOI] ~0.310 0.016 0.255 0,394 =0.095
log FWHM CITT] -0.188 0.07T =0.623 0.054 0,402
log EW Lya =0.177T -0.502 -0.006 -0.143 0.033
kog EW CIV =0.336 -0.262 0048 0050 0303
CIV/Lyo -0.342 0062 0025 -0074 -0.534
log EW C111] -0.262 -0413 ~0.0H <0176 -0.008
& 1]/ 1] 0.342 0040 D018 0311 -0.118
NV/Lya 0.231 =0.060 -0.573 0,107 =0.233
A1400/ Lya 0.223 -0.351 -0225 0441 -0218

Figure 1: The results of the Francis-Wills analysis. ¢ denotes that 18 of the 22 QSO
spectra were used, with 4 cases containing missing values. See below.

Francis and Wills describe this answer:

“We perform a PCA on the small sample of 22 QSOs discussed by Wills et al. (1998,
in Structure and Kinematics of Quasar Broad Line Regions, ed Gaskell, M. et al., ASP
Conf. Ser. 162, and 1998, in Quasars as Standard Candles for Cosmology, ed. Ferland,
G., ASP Conf. Ser., in press), using a subset of the available measured properties
shown in (the data table). Unavoidably, there are missing data, so the number of
objects available depends on the variables chosen for the PCA....

...(The data table) presents, for each variable, the number of data points, the mean and
the standard deviation. Notice the completely different units for different measured
parameters....In order to weight the variables more or less equally, after subtracting the
mean values, we normalize by the variance. The choice of weights is a difficult issue,
and depends on the user’s knowledge of the data, and preferences, as well as the use
to which the results will be put. The results of performing a PCA on these normalized
variables are shown (above, Figure 1). Columns (2)-(6) show the first 5 out of a total
of 13 principal components. The first row gives the variances (eigenvalues) of the data
along the direction of the corresponding principal component. The sums of all the



variances add up to the sums of the variances of the input variables, in this case, 13.
By convention, the principal components are given in order of their contribution to the
total variance. This is given as ‘Proportion’ in the second line, and the ‘Cumulative’
proportion on the third line. Thus, among the parameters we have chosen to use, the
first principal component contributes 50% of the spectrum-to-spectrum variance, the
second 22%, the third, 12%. The first two principal components together contribute
71% of the variance, the first 3, 84%, and the first 4, nearly 90%.

The columns of numbers for each principal component represent the weights assigned
to each input variable. Thus PC1 = 0.053z; + 0.29529 — 0.330z3 . .., where z1, 9, x3
are the values of the normalized variables corresponding to logLis16, o, FWHM Hg,
etc. By convention these weights are chosen so that the sum of their squares = 1. This
arbitrarily fixes the scale of the new variable. The sign of the new variable is therefore
arbitrary....

The first principal component is elongated with variance about 6.5 times that of any
individual measurements, and accounts for about half the total variance. This is there-
fore likely to be highly significant. If all measured, normalized quantities contributed
equally to PC1, they would all have weight 0.277 (1/4/13 for 13 variables), but each
variable contributes more or less than this. One way to test the significance of the
contribution of any one measured variable, is to perform the PCA without that vari-
able, then check the significance of the correlation between that variable and the scores
of the new principal component. This procedure shows that all measured variables
except Lioig, log FWHM CIII], and log EW Ly, correlate with PC1, but correlations
involving NV /Ly« and A1400/Lya are not very strong. PC2, accounting for 22% of
the variance in this dataset, appears to link the EW Lya, EW CIV, and EW CIII] with
L1216, so EW CIV and EW CIII] appear to contribute to both PC1 and PC2, but EW
Lya contributes predominantly to PC2. Is PC2 a significant component? A similar
correlation test shows that individually the EWs do anti-correlate with Lis14, but this
result depends on the lowest EWs for the highest luminosity QSO PG1226+023 and
the highest EWs for the low luminosity QSO PG1202+281. However Lis4 correlates
significantly (Pearson’s ordinary correlation coefficient = -0.77) with PC2 formed when
L1216 is excluded. Thus there is a significant overall correlation between EW and Lo,
although a larger sample is clearly needed to investigate the individual EW correla-
tions. Another test may be to check correlations between observed measurements for
those measurements that contribute to only one significant principal component - for
example, CIV /Ly« vs. Fell/Hp...

As a rule of thumb, any principal component with variance greater than 1, should be
considered seriously. It is also worth investigating any principal component with vari-
ance rather greater than that of the remaining principal components. In our example,
this could mean the first three principal components.”

We consider the example step-by-step to make it easy to trace your own solution
through.

(1) The first step is to take the original data and put it into normalized or weighted



form so that the effect of different scales and different units is effectively removed. In
doing so, note the tiny mistake in Francis & Wills; the mean is subtracted from each
of the 13 variables and they are then normalized by the standard deviation, not the
variance, as dimensional analysis shows.

Here again is the data table:

gso data 1
1 45.
2 45.
3 44 .
4 45.
5 46.
6 44 .
7 46.
8 46.
9 45.

10 45.

11 45.

12 45.

13 45.

14 45.

15 45.

16 45.

17 46.

18 45.

mean 45.
std dev 0.

Part of the normalization process is to compute the
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of each of the 13 variables. The column variables computed here differ slightly from
those of Francis and Wills, presumably because they used data from all 22 QSOs. Here
we have rejected entirely the 4 QSOs with incomplete data; the differences are not
significant, as we shall see. The table of normalized data (x(,j) — 7;)/0; is then as

follows:
gso data 1
1 0.14
2 0.52
3 -1.35
4 -0.42
5 0.89
6 -1.84
7 0.96
8 2.54
9 -0.11
10 -0.40
11 -0.57
12 0.31
13 -1.15
14 -0.13
156 -0.82
16 0.72
17 0.98
18 -0.26
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This process of ‘data adjustment’, weighting, normalizing, whatever, is critical to the
outcome, in particular to whether we understand the significance of the results, and



whether the error/covariance matrix really does the job we expect of it. As emphasized
by Paul and Bev, there are many ways of doing this: we can take logs of the data, we
can weight by factors other than standard deviations based on prior knowledge, etc.
So, dare we see what the present weighting system looks like? Figure 1 plots the run
of the 18 points, one from each QSO, for each of the 13 data.

1

Figure 2: The run of each of the 13 data sets, data from 18 QSOs. QSO number is
along the x-axis. Each plot is +40.

Looks pretty good, does it not? All the points are there; there’s only one deviation > 3o
in 234 points, not far off expectation for Gaussian distributions, and the distributions
look reasonable. We may be confident that the results will be understandable.

2) Step 2 is to construct the covariance or error matrix. This is a 13 x 13 symmetric
y
matrix:
<> < 1T9 >
C = | <mz0> <12> (1)

(2)



The following few lines of Fortran set it up:

c normalized data in xn(18,13); set up the upper-right off-diagonal elements
do 100 j=1,13
do 100 k=j+1,13
do 110 i=1,18
el1(j,k)=el1(j,k)+xn(i,j)*xn(i,k)

110 continue
el1(j,k)=el1(j,k)/18.
100 continue

c set up the diagonal elements (which should all be 1.0 - just checking!)
do 130 j=1,13
do 128 i=1,18
el(j,j)=e1(j,j)+xn(i,j)*xn(i,j)

128 continue
el(j,j)=e1(j,j)/18.
130 continue

c reflect the off-diagonal matrix elements about the diagonal
do 120 j=1,13
do 120 k=j+1,13
el(k,j)=el(j,k)
120 continue

Here is the resulting 13 x 13 covariance matrix:

1.0000 -0.1530 0.1135 -0.0414 -0.1420 0.0627 -0.7656 -0.4387 0.0620 -0
-0.1630 1.0000 -0.6775 0.6117 -0.5009 -0.4853 -0.0647 -0.4348 -0.6603 -0
0.1135 -0.6775 1.0000 -0.7000 0.5029 0.7748 0.2860 0.6694 0.7656 O
-0.0414 0.6117 -0.7000 1.0000 -0.7829 -0.5204 -0.1602 -0.5852 -0.6826 -0
-0.1420 -0.5009 0.5029 -0.7829 1.0000 0.1549 0.3013 0.6476 0.6979 0
0.0627 -0.4853 0.7748 -0.5204 0.1549 1.0000 0.1207 0.2595 0.2923 0
-0.7656 -0.0647 0.2860 -0.1602 0.3013 0.1207 1.0000 0.7653 0.2489 0
-0.4387 -0.4348 0.6694 -0.5852 0.6476 0.2595 0.7653 1.0000 0.79256 O
0.0620 -0.6603 0.7656 -0.6826 0.6979 0.2923 0.2489 0.7925 1.0000 O.
-0.6803 -0.3460 0.5151 -0.3701 0.3944 0.3465 0.8897 0.8609 0.5117 1
-0.0962 0.6255 -0.7008 0.9295 -0.6505 -0.4627 -0.1574 -0.6196 -0.7328 -0
0.1764 0.4159 -0.2118 0.5139 -0.5894 0.1881 -0.1864 -0.4830 -0.4608 -0
-0.3794 0.6514 -0.4287 0.5182 -0.4519 -0.1898 0.1630 -0.2307 -0.5046 0
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-0.
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-0.
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-0.
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-0.
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-0.
-0.
.5622
.0000
.6198
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5894

1864
4830
4608
2054

-0.
.6514
.4287
.5182
.4519
.1898
.1630
.2307
.5046
.0287
.5626
.6198
.0000

3794

(3) All we have to do now is solve 13 13th order equations in 13 unknowns to get the
eigenvalues of this matrix! But this is 150-year old technology; for symmetric matrices,
Jacobi rotations do the trick, each plane rotation or transformation designed to get rid
of one off-diagonal matrix element. “The Jacobi method is absolutely foolproof for all
real symmetric matrices” — Numerical Recipes. The Numerical Recipes routine (jacobi,
how did you guess), when supplied with the covariance matrix returns the eigenvalues,
the array of eigenvectors, and the number of rotations required, which turns out to be

about 3 * 132 = 500. The cpu time required is insignificant.

The routine eigsrt orders the eigenvalues (hardly necessary when there are only 13)
and the eigenvectors (helpful). Here are the results from putting the covariance array

into jacobi and the results from jacob: into eigsrt:

Rotations: 459

Eigenvalues: 6.451 2.820 1.589 0.624 0.565 0.343 0.261 0.172 0.122 0.023 0.019 0.010 0.002



Eigenvectors:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PCi1 PC12  PC13

-0.055 0.534 0.126 -0.018 0.408 0.193 -0.128 -0.322 -0.418 0.075 0.250 0.280 -0.226
-0.294 -0.197 -0.082 0.490 0.151 0.511 -0.456 0.146 0.282 0.090 0.147 -0.018 -0.071
0.330 0.077 0.357 -0.081 0.149 0.133 -0.213 0.422 -0.296 0.111 0.150 -0.480 0.366
-0.342 -0.139 -0.006 -0.484 0.222 -0.001 -0.074 0.184 0.013 0.656 -0.297 0.146 0.015
0.310 0.016 -0.252 0.396 0.093 -0.619 -0.389 -0.017 -0.064 0.352 -0.019 0.105 0.018
0.198 0.075 0.624 0.044 -0.399 0.007 -0.183 0.234 0.132 0.064 -0.129 0.394 -0.351
0.177 -0.503 0.005 -0.138 -0.026 0.127 -0.312 -0.352 -0.396 -0.101 -0.283 -0.242 -0.391
0.336 -0.262 -0.051 -0.046 0.302 0.196 -0.049 0.046 -0.041 -0.276 -0.214 0.601 0.441
0.342 0.064 -0.031 -0.067 0.581 -0.034 0.180 0.215 0.411 -0.112 -0.128 -0.171 -0.479
0.261 -0.414 0.124 -0.177 0.012 0.016 0.146 -0.257 0.203 0.294 0.698 0.101 -0.016
-0.342 -0.149 0.015 -0.310 0.125 -0.399 -0.362 0.301 -0.056 -0.469 0.348 0.106 -0.113
-0.231 -0.053 0.571 0.112 0.288 -0.258 -0.088 -0.465 0.291 -0.083 -0.190 -0.159 0.279
-0.223 -0.351 0.225 0.441 0.207 -0.136 0.499 0.251 -0.424 0.054 0.019 0.087 -0.135

One simple check of this step: the eigenvalues must add up to the trace of the array,
the sum of the diagonal elements, 13 of course.

We see that the eigenvalues are virtually identical to those in the results table given at
the outset in Figure 1; and the eigenvectors likewise. These eigenvector columns are
the weights assigned to the input variables by each eigenvalue; e.g. PC1 = —0.55z; —
0.294z5 + 0.330x3 . . .; the sign of this new variable is arbitrary and note that for the
current solution this sign differs in three out of the 5 PCAs presented in the initial
table.

As Francis and Wills advise, one way to test the significance of the contribution of
any one variable to the eigenvalue (total variance) is to remove it and perform the
analysis again. There is perhaps an earlier step, namely what confidence to place
in the eigenvalue itself being of significance. The eigenvalues are plotted in Figure 3
below.
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Figure 3: The set of 13 eigenvalues. The error bars are approximate +10 as determined
from a bootstrap analysis described below.

As Francis and Wills note, the first eigenvalue looks highly significant. It is then well



worth investigating the individual contributors to it. But how strongly are we to believe
that there is significance in the PCAs described by eigenvectors 2 and 37

Once the formalism to set up the steps (1), (2) and (3) above is complete, doing a
bootstrap test is particularly easy. All we need to do is to select 18 of our QSOs
at random and with replacement, standard bootstrap procedure (§6.5), rebuild our
normalized data array, reform the covariance matrix, and solve for the eigenvalues
again. We can do this as many times as we like, because the cpu time is not really an
issue; and the range of results tells us our expected distributions for all the eigenvalues.
Figure 4 shows the results of 10000 trials and these trials took a total of about 10 sec
on a slow (800 MHz) laptop.
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Figure 4: The results of 10000 bootstrap runs to determine the spread for each of
the eigenvalues determined in the Francis and Wills example. Frequency runs north;
the value of each eigenvalue runs east-west, with colour-coding used to discriminate
between the 5 top eigenvalues plotted.

The error bars in Figure 3 come from these distributions. They show the clear signif-
icance of eigenvectors 1 and 2; and eigenvector 3 is almost certainly significant. We
can forget about the rest; the chances of eigenvalue 4 being 1.0 are minuscule, and
eigenvalue 5 and the rest never get anywhere near it.

It is worth, then, trying to understand the physical significance of PCAs 1, 2 and 3, as
Francis and Wills discuss.

PCA represents the ultimate powerful way of searching for correlations in a stack of
data. It is so simple to perform and no special numerical skills are required. There are
a few caveats of course.

1. The distribution of points in the multi-dimension space must be essentially uni-
modal. Consider interpreting what PCA might mean in the simple 2D case in
which there are two separate blobs of (x,y) points. PCA is certainly going to find
the axis joining the blobs. It is not going to tell you why there are two blobs



or even that there are two blobs. What will you make of the variance in the
other direction, the other PCA, which may have to reflect entirely different blob
scatters somehow?

Thus the data need to be of quadratic form; they need to cluster continuously
around the PCA, but they need not do this necessarily in a Gaussian manner. In
fact the method is immensely forgiving in terms of distribution, provided the ‘uni-
modal’ condition is met - you will always get an answer, although interpretation
may be difficult.

2. For this latter reason it is important to investigate at the outset what the form
of the data scatter will be, with plots such as that of Figure 2. It may well be
worth considering other methods of central location for zero-pointing, such as the
median; and methods of normalizing other than a standard deviation computed
from rms.

3. PCA software is available in widely used software packages - SPSS, SAS, Minitab.
It is also available at Paul Francis’s web site
http://msowww.anu.edu.au/ pfrancis/
If using this, please observe the acknowledgement requested by Paul.

But in the end, is it worth learning about another data interface? And will you
understand what a PCA package has done for you? The PCA tools are simple; for
standard PCA you only need a routine for solving a symmetric matrix. To understand
the errors you need the bootstrap. That’s it.

To advance your knowledge of PCA considerably, consider the following.

1. Set up a simple 2D correlation, pairs of (x,y) either invented, or (better) de-
signed as a bivariate Gaussian correlation (§6.5.1). Use less than 100 pairs, but
a reasonable degree of correlation (p > 0.5). Find the PCAs first geometrically,
by rotating the axis to minimize/maximize variances, and then through deter-
mining the eigenvalues and eigenvectors of the covariance matrix. Understand
completely the relation between the results from each approach.

2. Set up a similar experiment in 3D, with different correlation coefficients (§6.5.1).
Derive the PCA; understand the relation of the eigenvalues and eigenvectors to
your input parameters.

3. Consider robustness: try to fool the PCA by throwing in outliers, or even by
superposing two blobs of points in 2D or 3D experiments to see how PCA performs
and under what conditions it produces believable answers.

4. In all of these, use bootstrap tests to estimate errors on eigenvalues. Relate these
errors to errors anticipated given the input data.



