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ABSTRACT

A novel method for determining luminosity functions from preselected random samples is
derived. The method incorporates positive flux measurements as well as flux upper limits. It is
nonparametric, and enables one to determine the best estimate and ranges of uncertainty for the
shape of the luminosity function, and for any physical quantity that depends on the shape of the
luminosity function. By applying this method to preliminary results from the quasar-survey of the
Einstein observatory, we determine the distribution of the values of L,/L,, for quasars, and
the average of this ratio. The method is very general and can be used to determine any type of
distribution function (not only luminosity functions). It can also be formulated as a parametric
method, and be used to determine the parameters of distribution functions with presumed

functional forms.

Subject headings: luminosity function — quasars — X-rays: background — X-rays: sources

I. INTRODUCTION

Standard procedures for determining luminosity
functions involve observations of complete samples.
These samples include all objects of a given population
within a specified region of sky, subject to a well-
defined set of observational selection criteria. Most
commonly used are flux-limited samples, in which one
utilizes only those objects whose fluxes are higher than
the sample thresholds.

The main purpose of this paper is to derive a method
for determining luminosity functions, a method based
on an entirely different observational program. A
preselected random sample of objects is drawn. Each
of the objects in the sample is then observed down to a
certain limiting threshold (which can vary from one
object to another), thus yielding a measurement of the
flux from that object, or an upper limit for the flux. The
set of observed fluxes and upper limits is analyzed
using a maximum likelihood approach to determine
the shape of the luminosity function.

Our method makes it possible to combine large
bodies of data acquired with very different sensitivities
and, in particular, observations of single objects. The
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method utilizes both measured fluxes and flux upper
limits, and thus makes use also of objects whose fluxes
fall below the observational thresholds. For a wide
range of circumstances the best estimate for the shape
of the luminosity function can be calculated from a
simple analytic expression. In other cases, very simple
numerical computations are required. Our technique
can be formulated either as a nonparametric method,
in which case the shape of the luminosity function is
determined without any prior assumptions, or as a
parametric method, when the parameters of a pre-
sumed functional form are determined. In either case
the method makes it possible to calculate not only the
best estimate, but also ranges of uncertainty for the
shape of the luminosity function and for any physical
quantity that depends on this shape. The normali-
zation of the luminosity function is not determinable
by our method.

We apply our method to preliminary results from
the quasar survey undertaken with the Einstein obser-
vatory (Giacconi et al. 1979a; Tananbaum et al. 1979).
We find the shape of the distribution of the values of
L,/L,, nonparametrically, i.e., without any prior
assumption on this shape. We also find the best
estimate and the range of uncertainty of the average
L,/L,, ratio for quasars. This is the fundamental
quantity that enters the calculation of the contribution
of quasars to the extragalactic X-ray background,
when one uses optical number counts of quasars or
assumes the optical luminosity-function of quasars
and its cosmological evolution. Our results were used
by Tananbaum et al. (1979) to discuss the relation of
quasars to the diffuse X-ray background.
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The plan of the paper is as follows. In §II we
summarize the basic data, obtained with the FEinstein
observatory, that serve as the input for calculating the
average L./L,, ratio for quasars. This serves two
purposes. (a) It provides the reader with an explicit
example, in order to make it easier to follow the
derivation of the general method. (b) It states in more
detail the assumptions entering the calculation of
(Ly/Lyy, since the results may still be subject to
systematic biases. In § IIT we derive our method and
describe in detail its simplest version. This version
concerns a luminosity function of one independent
variable, the range of values of this variable is binned,
and the method is formulated nonparametrically. This
is the main part of the paper. In § IV we present the
determination of the preliminary estimate of (L, /L, >
for quasars. In § V we describe several generalizations
of the method. This section is formulated a bit more
formally than the rest of the paper. It is intended for
readers who are actually interested in applying the
method to more complicated situations, where the
simplest version is not adequate. We summarize our
results briefly in § VL.

II. BASIC QUASAR DATA

Thirty-five known quasars, previously undetected as
X-ray sources (except for 3C 273), were observed with
the Einstein observatory (see Tananbaum et al. 1979
for details). The length of observation for each quasar
was determined a priori, defining a limiting detectable
X-ray flux in each case. Twenty-seven quasars were
detected at flux levels above their respective thresh-
olds, whereas eight flux upper limits were obtained
for the remaining quasars. The measured fluxes yielded
monochromatic X-ray luminosities at 2 keV at the
source, L, .y. Flux upper limits yielded similarly upper
limits for L,,.y. Optical monochromatic luminosities
at 2500 A at the source, L,sy4, Were calculated from
optical data. The ratio of X-ray to optical mono-
chromatic luminosities is parametrized by an energy
power-law index o, , so that by using the appropriate
numerical values one has

Lyyev/Lasgo & = dex (—2.605a, ) . (1)

The FEinstein X-ray observations provide 27 measured
values of o, ,, and eight lower limits for oy, A
histogram showing the distribution of observed values,
binned into intervals of Aa, , = 0.1, and the positions
of the lower limits are given in Figure 1.

Within the limitations of this preliminary, rather
small sample, the observed values of oy, did not
exhibit any obvious strong correlations with L,s x or
z. We therefore make the preliminary assumption that
the distribution of the values of «, . is independent of z,
L,s0 4, OF any other intrinsic property of quasars not
related to their X-ray luminosity. This is formally
equivalent to assuming that the quasar luminosity
function Y(z, Lysgo 4, - - - » Lo yey) €an be factorized in the
form ¢(z, Lyspo s, - - )0, ), Where the dots symbolize

T T T T T T T T T T

N(Q ox)

0.8 1.0 1.2 14 1.6 I8 20
Qox

Fi1G. 1.—A histogram of the values of «,, for the detected
quasars, and the values of the lower limits of a, , for the undetected
quasars (marked by horizontal bars), from the preliminary quasar
sample.

all additional intrinsic properties not related to L, .y,
and fcan be taken to be normalized, | dx, , f(o0 ) = 1.

Since the 35 quasars were preselected for the X-ray
observations without any regard to their X-ray lumi-
nosities, the sample can be considered as a preselected
random sample concerning the distribution of a, .
Each quasar is an independent probe of the luminosity
function f(a, ). A given quasar can be detected if its
value of « , is smaller than a certain predetermined
limiting value o, " (which can vary from quasar to
quasar). Ifitis detected, one records the value of «q .. If
it is not detected, one records «, ™, which is a lower
limit to the actual value of its a, . Given the set of
values of «, , for the detected quasars and of a, ™ for
the undetected quasars, we wish to estimate the
function f{(o, ), and the corresponding average of
Ly ev/Lasoo &> glven (see eq. [1]) by

(Lyyev/Lasoo 4 = Jdao,xf(o‘o,x)

x dex (—2.605q, ) . 2)

This can be achieved by our method, described in the
next section.

Our preliminary basic assumption is a rather strong
one. Consequently, our results and the subsequent
conclusions of Tananbaum et al. (1979) may be subject
to serious systematic biases. The sample is very heavily
weighted by radio-observed quasars. If a correlation
exists between the quasar radio-luminosity and L, .y,
the sample is biased toward smaller values of . This
possibility will be studied by further observations
currently in progress. We also note that the X-ray
observations yielding L, ..y were not performed simul-
taneously with the optical observations that yielded
Lysg 4. Thus the distribution of o, , may be affected by
time variability.

Our results are not subject to any statistical bias,
which might a priori result from the fact that it is easier
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to observe in X-rays quasars with smaller values of o .
(cf. Giacconi et al. 1979b). This is achieved by in-
corporating into the analysis both the observed values
of &, , and the lower limits to o, ,, and by excluding
from the analysis quasars selected (discovered) by their
X-ray emission.

We note that if the preliminary quasar sample had
indicated no correlation at all between L,y and
L 4, We could have used our method to estimate an
X-ray luminosity function of quasars of the form
S(L,,.y) rather than of the form f(L,.v/Lyso 4)-

1II. THE METHOD

In this section we describe the basis elements of our
method. We present its simplest version, where a
distribution function f of one variable « is estimated,
the range of values of « is binned, and the estimation is
done without presuming any functional form for f(i.e.,
nonparametric approach).

a) Notation

A random variable « is described by a normalized
probability distribution function f(«). A sample of J
independent values of « is drawn. Let us denote the
different drawings by the index j, and the correspond-
ing values of o by a;. A set of J “thresholds” o™ is
specified in advance. If, for some j, ot; < ot;™ then the
actual value of a;is known. If, however o S a ™ then
the actual value of a;is not known, but the fact that o;
> o™ is known.

Let us denote by J the number of drawings in which
o; turned out to be <a;™. For notational simplicity
assume that these drawings are labeled by values of j
from 1 to J. In each of the remaining J — J drawings,
labeled by values of j from J + 1 to J, o; turned out to
be > o™ and is not known.

We now bin the range of values of the variable «.
Suppose there are M bins, labeled by an index k that
runs from 1 to M.> We let the central value of o in each
bin be denoted by &, and we assume that the label & is
ordered so that @; < &, <--- < 4.

Finally, let us denote by k(j) the index of the bin
inside which the value of a; falls. Let k™ () denote the
index of the bin whose upper boundary is closest to the
value of «;"™. Let us denote the a priori probability that
o is inside bin k by f;; this probability is equal to the
integral of f(«) inside bin £.

Using the above definitions the sample yields the
following data. In J drawings labeled by 1 <j < J the
values of o; are known and fall into the bins whose
indices are k( /). In J — J drawings labeled by J+1
< j < Jthe values of a; are not known, but it is known
that each «; must fall into one of the bins labeled by k

> k™)) + 1 (rounded off to the nearest half bin).

b) The Likelihood Function
The a priori probability that in drawing j the value of
«;is smaller than its threshold o™ and that a; falls into

5 More generally, £ may be allowed to run from I to oo or
from — oo to 4+ o, or from —oo to —1.

Vol. 238

bin k(j) is fi(;- The a priori probability that in drawing j
the value of a;is larger than o™ and that consequently
a; falls into one of the bins with k > k™) + 1is

M

i -
k=km(j)+1
Therefore, the likelihood function, which is the a priori
joint probability of obtaining the actual results of the
sample, is

J M
i_i k() X i_[ [ > fL] : (3)
i= j=7+1 Lk=ktm(y+1

It is convenient to write L = ¢~ /2%,

Denote by N(k) the number of drawmgs in which «;
< o™ and «o; falls into bin k. [N(k) is simply the
hlstogram of detected values of a.] Clearly one has

Z N(k) =
k=1

Denote by U(k) the number of drawings in which a;

> o™ and k™(j) + 1 = k. [U(k) is simply the “his-

togram of upper limits for those drawings in which «
is not detected. U(k) is the number of drawings in
which o must fall in one of the bins whose label is k or
larger. It is not an ordinary histogram.] Clearly one
has

With these deﬁnmons S can be written in the form

S=-23 (NK)Infi)=2y [U(k) ln<§ j;‘,>:|-
k=1 k=1

k' =k
“4)

¢) Analytic Solution

We now estimate the function f{«) using a non-
parametric approach. All the different probabilities f;
are considered to be free parameters, and no functional
form is presumed. The best estimate is obtained by
maximizing L, or equivalently by minimizing S, with
respect to the f;’s, subject to the constraint that f is
normalized. We use the method of Lagrange multi-
pliers. We introduce the constraint function and
equation

Esz~1_o (5)

By minimizing the appropriate auxiliary function we
find

N(n)
fo= !
J = Yi=1 LUK)/(1 — ey fi)]
[For n=1 and k=1,
brackets is U(1).]
Equation (6) is an analytic, recursive solution for the

the quantity in the square
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values of f,. To see this note that the sum over k runs
from 1 to n, so for each term k < n. For a given k, the
sum over k' runs from 1 to k — 1, so for each term k'
< k. Therefore k' < n. Thus equation (6) expresses f,
in terms of known numbers [J, N(n), U(k)] and of
values of f,. with k&’ < n. It is therefore possible to
calculate f;, then f,, then f3, and so on until all f;’s are
found.

Thus we have shown that our method yields a simple
analytic solution for the best estimate of a distribution
function of one independent variable, when the range
of values of this variable is binned, in a nonparametric
approach. Generalizations of our basic method are
discussed in §V, including a description of error
analysis for the shape of f{lo) and for any physical
quantity that depends on it.

We wish to remark that in pathological cases it may
perhaps happen that not all values of f, obtained with
equation (6) turn out to be between 0 and 1.6 In such
cases one must minimize numerically the function S of
equation (4) subject to the constraint (5) and to the
constraints 0 < f, <1for 1l <n< M.

d) Intuitive Derivation

Equation (6) can be understood in terms of very
simple intuitive arguments. In an estimation problem
where there are no thresholds and all the a)’s are a
priori guaranteed to be detected, the best estimates for
the probabilities f, are simply N(n)/J, i.e., the number
of o’s detected in each bin divided by the total number
of drawings. In our estimation problem some «’s are
not detected. Consider those drawings in which o is not
detected and for which « must fall into one of the bins
with index & or larger. The number of these drawings is
U(k). What is the most likely distribution of the actual
U(k) values of a? The conditional probability that o
falls into bin #n, given that it has to fall into bins with
index k or larger, is

M
W3k
k'=k
for n > k. The U(k) values of a will therefore be

distributed on the average in such a way that binn
(with n > k) contains

ukf, / > e

k'=k

values. We can thus define an ““effective” number of
detected o’s in bin # given by

" Uk
Naal) = Neo) + 3, “’;"k -
k'=k

After “distributing” the undetected o’s among the
various bins, we use the result for the estimation

)

6 That is, if the true solution to the minimalization problem is not
intrinsic to the M-dimensional cube 0 < f, <1 but is a boundary
solution.
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TABLE 1
“HISTOGRAMS” OF DETECTED VALUES OF 0 , AND OF
LOWER LIMITS o, ™ FOR THE QUASAR SAMPLE

k N(k) U(k)
Lo 2 0
2 e 1 1
< 2 AP 4 1
G o 4 0
S e 3 1
B e 6 0
7/ 3 3
B e 1 1
D e 2 0
L0 e 1 1

problem without thresholds, namely,
Neg(n)
fo= ____eJ . (8)

Equations (7) and (8) lead immediately to our formal
solution, equation (6). We also note that in the special
case where all the thresholds ;™ are very large and all
the o;’s are detected, U(k) =0 for all bins, and
equation (6) reduces to the simple result, f, = N(n)/J.

IV. THE AVERAGE QUASAR L /L, RATIO
a) Best Estimates

The basic data obtained in the quasar survey with
the Einstein observatory are described by Tananbaum
et al. (1979) and in § II of this paper. The preliminary
sample contains J = 35 quasars. The number of de-
tected values of ay , is J=217, wh11e for the remaining
J — J = 8 quasars lower hmlts oo, Were obtained. All
the detected values and lower limits are in the range
from 0.94 to 1.86. We therefore consider the permis-
sible range for o, , to be [0.9, 1.9].7 We bin this range
into M = 10 equal bins with width Aa, , = 0.1. The
bins are labeled by an index & with 1 < k < 10. The
histogram N(k) of detected values of o, , in each bin
and the “histogram” U(k) of lower limits for a, , (as
defined in § I11b) can be obtained from Figure 1. These
“histograms” are summarized in Table 1.

The best estimate for the set of probabilities f; that
describes the luminosity function f(a, ,), can be de-
rived recursively from equation (6). The resultlng
solution is given in Figure 2.

The best estimate for the average {L,.v/Laspo 4, 18
derived from the above solution using equation (2),
which after binning reads

(Lyyev/Lasoo &> = Z S dex (—2.605a,) , ®
k=1

where &, is the central value of a, , in bink (i.e., a;
=095, a, =1.05, etc.). The resulting value is
{Lyov/Laso 2> = 5.16 10~ %, We can express this value
by defining an “effective” value for o, , using an

7 But see also below.
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FIG. 2.—The best estimate of the luminosity function f(a, ) for 10 120 130 140

quasars determined from the preliminary quasar sample, using the
nonparametric approach.

expression analogous to equation (1), namely,
{Lyvev/Lasoo 4> = dex (_2-605%,;“) .
=1.26.

(10)

We obtain «, T

b) Range of Uncertainty

We now calculate the statistical range of uncertainty
for o, Let us denote by e the value of
{Lyyey/Laspo ). We choose a trial value of e, and
calculate for it the minimum value of the function S (of
eq. [4]) subject to the normalization constraint (of eq.
[5]) and subject to the further constraint that the right-
hand side of equation (9) be numerically equal to et
The resulting function S, (e) is plotted in Figure 3
(solid line), where each trial value of e is represented by
the corresponding trial value of to.". The overall
minimum of this function S, is at oy ,*" = 1.26, which
verifies our analytic solution for the best estimate. As
we explain below in § Va, the 68%, (1 o) confidence
limits for «, " are obtained by requiring that S,,;,.(e)
— Spin < 1; they are therefore (1.217, 1.306). The 95‘70
2 0) conﬁdence limits correspond to S,.(¢) — Suin
< 4; they are therefore (1.174, 1.350). In other words,
the 2 ¢ estimate for a, " is 1.26 + 0.09.

¢) Dependence on the Permissible Range. of %o.x

We have assumed so far that the permissible range of
do,,15 [0.9, 1.9], as all the detected values of a, , and all
the lower limits, in the preliminary sample, fall in that
range. It is in principle possible that the luminosity
function f(«, ) has nonzero small probabilities outside
of the above range. We therefore discuss now how our
results will change if we include additional bins of o,

8 This minimalization problem was solved numerically using
routine EO4WAF of the NAG library on the VAX computer of the
Center for Astrophysics. The calculation of one value of S, (e) took
less than 5 s of computer time.

ff
ag,x(e)

F1G. 3.—The minimum value of the function S (related to the
llkellhood function L by L = e~"/?%) as a function of the trial value
of &, from the preliminary quasar sample. Solid line, with 10 bins
of ay , spanning the range [0.9, 1.9]. Broken line, with 12 bins of &,
spanning the range [0.8, 2.0]. The two curves coincide for 1.205
< 0, < 1.36.

in the analysis; namely, bins labeled by values of k < 0
that correspond to oy, < 0.9, and bins labeled by
values of k > 11 that correspond to o, , > 1.9.

The first important point to notice is that the best
estimate for the shape of f(«, ,) will not change, and
consequently the best estimate for (L, .v/L,sg > Will
not change. This follows directly from our analytic
solution (eq. [6]). All the additional bins contain no
detected values of a, , [N(n) = 0 for n < 0 and for n
> 11]. Thus f, = 0 for all such “empty” bins, and the
“new” values of f, for 1 <n < 10, will now be equal to
the “old” values obtained previously without the
added bins.

The range of uncertainty for {L,,.v/Lys s> can,
however, become wider. The new value of S, (e) is
calculated using more free parameters than the old
value; therefore, it may be lower than the old value.
Thus more values of e may enter the new confidence
interval for any specified confidence level.

To study this possibility numerically, we have
recalculated the function S,;,(e) adding two new bins
of uy,. One new bin is labeled by kK =0 and cor-
responds to the range [0.8, 0.9] of o, ,; the other new
bin is labeled by k£ = 11 and corresponds to the range
[1.9,2.0]. The “new” function S, (e) is plotted in
Figure 3 (broken line), together with the “old” Smm(e)
(solid line). We deduce that the 1 o limits for «, " and
the 2 ¢ upper limit for «, ,*" did not change by addmg
the two new bins, but the 2 ¢ lower limit for o, did
change from 1.174 to 1.168.

Itis easy to understand intuitively the trends in these
numerical results. From equations (9) and (10) it
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follows that o, " is sensitive numerically only to the
probabilities f, corresponding to the smallest allowed
values of o, .. Thus adding new bins at larger values of
oo, has almost no effect on the calculated ranges of
uncertainty. Adding new bins at smaller values of a,_,
has no effect on the calculated upper limit of o, " but
has a noticeable effect of reducing the calculated lower
limit of oq .

It follows from our general arguments and from our
numerical results that the calculated range of un-
certainty for a, T is not unique. This is a common
difficulty for all nonparametric methods whenever the
permissible range of the variable « is not bounded by
some additional information and one attempts to
estimate an unbounded function of «. To overcome
this difficulty one assumes that the range of permissible
values of ais not much wider than the range dictated by
the results of the sample. This is justified particularly if
the results of the sample indicate that f(o) indeed
approaches zero toward the relevant edges of that
range.

In our case, the best estimate we found for f(«, ,),
given in Figure 2, indicates that f(«, ,) becomes quite
small toward the lower edge of the range of a,,
dictated by the sample. Furthermore, our numerical
results show that by extending the lower edge of the
permissible range from 0.9 to 0.8 [where the extrapo-
lation of the best-estimate (o, ,) crosses zero], the 2 ¢
lower limit of «, " was reduced by a rather small
amount of 0.006. We conclude that a reasonable and
realistic estimate for «, ", and for its 2 ¢ uncertainty,
based on the results of the preliminary sample, is 1.26
(+0.09, —0.10). This result is numerically sensitive to
the few quasars with smallest a, , values. This result is
also possibly subject to the biases discussed in § II.

V. GENERALIZATIONS

We present in this section several generalizations of
our method, to complement the description of its basic
version given in § III. These generalizations include
error estimates for the shape of the luminosity function
/(=) and for any physical quantity that depends on it; a
formulation of the method without binning the range
of values of o; a parametric variant of the method,
where a functional form is presumed; and the esti-
mation of luminosity functions of several variables.

We follow closely the notations introduced in § I11,
and the reader is referred to our discussion there for the
definitions of the various symbols.

a) Error Estimates

The probabilities f, that characterize the shape of the
distribution function f(x) are estimated by a max-
imum-likelihood method. Therefore, standard Ay
techniques, applied on the function S, can be used to
find the uncertainties of these parameters.

In many cases of astrophysical interest one wishes to
find the range of uncertainty of some particular
physical quantity that depends on the shape of the

LUMINOSITY FUNCTION 805

luminosity function. In our case we wish to calculate
the uncertainty of (L, ,.v/L,se0 4> that depends on the
fi's through equation (9). Such error estimates can be
done in practice as follows.

Let e be a physical quantity that depends on the
values of f, through a function E( f;). Initially eisnot a
parameter of the distribution. We can make e such a
parameter by performing a transformation of vari-
ables. One then estimates the uncertainty in e by
treating it as a ‘“‘single interesting parameter” (see
Avni 1976, 1978). By transforming back to the original
variables, we find that the confidence interval for the
quantity e is simply and practically given as the set of
values of e that satisfy

< constrained by >
"M\E(f)=eand Y f, =1

constrained by
min

N >SA, (11)

where, e.g., A = 1 for 68%,, A = 2.71 for 907,, A = 4
for 95%,. The minimization problem in the first term of
equation (11) must in general be solved numerically. It
is a rather simple problem using available standard
computer routines.

b) Formulation without Binning

Our method can be formulated without binning the
range of the variable « into finite-size bins. The a priori
probability that in drawing j the value of o will be
smaller than its threshold and that it will be within an
infinitesimal range (d); around «; is f(;)(d);. The a
priori probability that in drawing j the value of o will be
larger than its threshold is | °.., dof(). The function S

aj(m

therefore obtains the form (cf. eq. [3])

§=-2 i In fla;) — 2 é In r daf(@),  (12)
i=1

j=J+1 a;m

where we have already subtracted from S a constant
term,

7
-2 Y In(dw);,
j=1
which plays no role in the minimization process. The
normalization constraint is expressed by the following
equation (cf. eq. [5])

gzjdocf(oc)— 1=0. (13)

In the nonparametric approach, we minimize S with
respect to the function f subject to the normalization
constraint, using the method of Lagrange multipliers.
We obtain the following solution:

J Mo — o
fw= 3 { (o — ) }

j=1 J— Zj =J+1 [9(%' - ocj'("‘))/j';‘;,(m) do/f(e)]
(14)
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where ¢ is the familiar delta-function, and 0 is the step-
function [6(x) =1 for x =0, 6(x) =0 for x < 0].
Equation (14) expresses f(x) as a sum of delta-
functions concentrated at the detected values of «,
namely, at the J-values «;. It is therefore more mean-
ingful to express the solution in terms of the cumu-
lative distribution F(x) defined by

F(o) = j " dolf(o) . (15)

By integrating equation (14) we get, for o not equal to
any of the «;’s, the following solution:

Foy= 2

<j<sJo<a

1 -1
17 | - (16
[ J+ls<j S;aj,(m)<aj1—F(ocj,( ))}

Here, F(x) has discrete jumps at the values of detected
a;’s. For a given value of «, the sum over j in equation
(16) extends only over drawings for which «; < a; for a
fixed j the sum over j extends only over drawings for
which ;" < a;; hence a;™ < a. Thus equation (16) is
a recursive solution for F(o).

Our basic estimation problem can therefore be
formulated without binning (eq. [12] and [13]). In the
particular case when the best estimate for the distri-
bution f(«) is calculated nonparametrically, we have
obtained an analytic recursive solution (eq. [16]). The
nonparametric best estimate for any physical quantity
that depends on f(«) is directly obtained by using that
solution. Such estimates are free from the small
ambiguity introduced by any choice of finite-size bins.
We note, however, that binning is practically required
in order to calculate the range of uncertainty for any
such physical quantity.

¢) Parametric Approach

When a particular functional form of f{«) is pre-
sumed, the function S (of eq. [4] or eq. {12]) and the
constraint function g (of eq. [5] or eq. [13]) are
considered to be functions of the parameters of the
distribution. All standard maximum-likelihood meth-
ods for parameter estimation can be applied. The
new ingredient which we introduce in this case is that
the likelihood function incorporates lower limits for
undetected a’s, in addition to the detected values of «.
The analysis therefore makes use of both flux measure-
ments and flux upper limits.

d) Functions of Several Variables

Our method can be generalized to facilitate numeri-
cal calculations of distribution functions of several
variables [e.g., the bivariate quasar luminosity func-
tion f(L,/Lyy, Li,e/L,y), using an appropriate sample
of optically selected quasars].

When fis a function of D variables, “«” is a vector a
of D dimensions, and so are the indices k, the detected
values a;, and the lower limits «,". The bins into which
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the range of a is divided are of D dimensions. The
“histogram”™ N(k) is now a D-dimensional matrix
N(k), as is the bin probability f;. Objects in the sample
can be either (i) detected at all the D variables (J such
objects), or (ii) detected at some of the variables and
undetected (possess only lower limits) at the other
variables, or (iii) undetected at all variables.

The function L corresponding to the case when the
range of a is binned is still given by equation (3); the
summation

M

k=k(m@()+1

is now understood to mean a summation over all bins
into which a; can fall in cases (ii) and (iii). The function
S corresponding to the case when the range of « is not
binned is still given by equation (12); the integral

@0
do.
a(m

is now understood to mean an integral over the region
of a inside which a; can be in cases (ii) and (iii). The
normalization constraints are still given by equations
(5) and (13); the summation and integral are now over
the whole a priori permissible range of a.

The derivation of best estimates and ranges of
uncertainty for the distribution function f(a), and for
any physical quantity that depends on it, involves
again the minimization of S with respect to f subject to
the appropriate constraints. This can be done numeri-
cally in precisely the same way as for the simpler case of
a one-dimensional variable. Both parametric and
nonparametric approaches can be utilized. The only
difference is that for distribution functions of more
than one variable, no analytic solution for the best
estimate of f can be derived in general. This is so
because there is no ““natural” ordering of the variable
a that would allow for a recursive solution.

VI. SUMMARY

We have derived a method for determining lumi-
nosity functions from preselected random samples.
The method incorporates flux measurements of de-
tected objects, as well as flux upper limits for unde-
tected objects. The method yields best estimates and
ranges of uncertainty for the shape of the luminosity
function and for any physical quantity that depends on
1t.

Our method can be formulated nonparametrically,
without any prior assumption on the shape of the
luminosity function. Alternatively, the method can be
formulated parametrically, when a particular func-
tional form is presumed. The method can be applied
both when the range of values of the random variable is
binned, and also when no binning is employed. The
method can be applied to determine luminosity func-
tions that depend on any number of variables.
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The basic ingredient of the method is the likelihood
function L, expressed as L = e~ /2% where S is given
by equations (4) or (12), and by their generalizations
described in § V. The likelihood function is constructed
using both ordinary measured fluxes and also flux
upper limits. Best estimates for the luminosity function
and for physical quantities depending on it are ob-
tained by minimizing .S subject to the constraint that
the luminosity function be normalized (eqs. [5] and
[13], and their generalizations described in § V). In the
particular case where one estimates a function of one
variable in the nonparametric approach, the problem
is solved analytically, yielding a simple recursive
expression for the luminosity function (eq. [6] or eq.
[16]). Ranges of uncertainty for the luminosity func-
tion and for relevant physical quantities are obtained
by minimizing S subject to the normalization con-
straint, and subject to an additional constraint that
holds fixed a trial-value of the physical quantity under
consideration (eq. [11] and its generalizations de-
scribed in §§ Vc and Vd). These minimization problems
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are solved numerically rather easily with available
computer routines.

We applied our method to a preliminary sample of
quasars observed with the Einstein observatory. We
determined the best estimate of the power-law index
0o " that characterizes the average value
{Lyxev/Lyssoay (see egs. [1] and [10], and the be-
ginning of § IT). We have also determined the statistical
uncertainty for a, " The 2 ¢ limits of a, " depend
weakly on the assumed permissible range of «, .. Since
the estimated distribution of «, , indicates that this
permissible range does not extend signiﬁcantlf?/ below
oo, S 0.9, we determine a 2 o estimate of «, . = 1.26
(+0.09, —0.10). Possible systematic biases in the
sample are discussed; these possible biases will be
resolved by further observations currently in progress.
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