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Data modelling 
Parameter estimation

Pierre-Simon, Marquis de Laplace 1749-1827 

Under Napoleon, Laplace was a  
member, then chancellor, of the  

Senate, and received the  
Legion of Honour in 1805.  

However Napoleon, in his memoirs  
written on St Hélène, says he  

removed Laplace from the office of  
Minister of the Interior, which he held  

in 1799, after only six weeks:-  
“... because he brought the spirit of  

the infinitely small into the government.”
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We fought our way through some non-parametric tests for samples. 

=> Despite power and versatility, these are still part of classical testing, a   
        process of ‘rejection’; they do not prove our alternative, the research hypothesis. 

=> Each one requires the  4-step methodology of classical hypothesis-testing: 
        (1) set up H0, H1; (2) specify a priori significance-level α we’re prepared to         
        accept and choose the test, set up the sampling distribution with its rejection  
        area(s) totalling α;  (3) compute the sampling statistic from our data, rejecting   
        H0 if it is a value in the rejection region; (4) carry out the terminal action. 

 => We looked at the non-parametric  tests for comparing single samples and for 
        comparing two (or more) samples: chi-square test (single-sample and two to k       
        samples), Kolmogorov-Smirnov test (single- and two-sample), Runs test for       
        randomness, single sample, Fisher exact probability test for two small samples   
        Wilcoxon-Mann-Whitney U test for two samples. 

=> Three-table summary, to help in choice of best test for problem. 
 

Last time ....
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A point that cannot be emphasized enough - 

If we have observational data which can be binned, and a model/hypothesis which  
         predicts the population of each bin,  

Then the chi-square statistic describes the  goodness-of-fit of the data to the model.   

With the observed numbers in each of k bins as Oi, and the expected values from  
the model as Ei, then this statistic is 

NB: REAL NUMBERS!!!! This is crucial. You cannot use normalized  
numbers or try to test one model against another model - the test depends on 
Poisson statistics holding good, i.e. on the ‘expected’ scatter being due to 
Poisson statistics alone. 

Once more - the Chi-Square Test (Pearson 1900)
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What are we doing?  

Say we have a model. For example,  

Or, take the Bayesian way - calculate a probability distribution for µ,  
given the data. 

Any data modelling procedure is just a more elaborate version of this.   

Data Modelling; Parameter Estimation
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Suppose our data Zi were measured at various values of some independent variable Xi,  
and we believed that they were“really” scattered, with Gaussian errors, around the  
underlying functional relationship, with (α1,α2, ….) unknown parameters  
(slopes, intercepts, …) of the relationship. 

             µ = µ(x,α1,α2, ….)  

We then have 

and, by Bayes' theorem, we have the posterior probability distribution for the  
parameters 

including as usual our prior information.  We have included µ as one of the “givens''  
to emphasize that everything depends on it being the correct model. 

We are done! We have a probability distribution for the parameters of our model,  
given the data. 

Data Modelling: what are we doing? - 2
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Good features: 

   - it can be used to update models as new data arrive, as the posterior from 
        one stage of the experiments becomes the prior for the next. 

   - we can also deal with unwanted parameters (“nuisance parameters”).   
         

      What are these? Typically we will end up with a probability distribution for various  
      parameters, some of interest (say, cosmological parameters) and some not (say,   
      instrumental calibrations).  We can ‘marginalize out' the unwanted parameters by    
      an integration, leaving us with the distribution of the variable of interest that takes   
      account of all plausible values of the unwanted variables. 

Data Modelling: what are we doing? - 3
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Bad features: 

 - Modelling can be very expensive, always involving finding a maximum or minimum   
      of some merit function. This means evaluating the function, plus its derivatives,  
      many times. The model itself may be the result of a complex computation;  
      evaluating  it over a multi-dimensional grid of parameters is even worse. 

 - Numerical integration may be another difficulty.  Interesting problems have many  
      parameters. Marginalizing these out, or calculating evidences for discriminating  
      between models, involves multi-dimensional integrals - time-consuming, and hard  
      to check.   

      Any analytical help we can get is especially welcome in doing integrations. 
       
      Powerful theorems may allow great simplifications. 

Data Modelling: what are we doing? - 4
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The most important thing to remember about models is - they may be wrong.   

Mistaken assumptions about the distribution of residuals about the model  represent  
the biggest danger.  

                                - The wrong parameters will be deduced from the model.  

                                - Wrong errors on the parameters will be obtained.  
                                   It is important to have a range of models, and always to  
                                   check optimized models against the data.  

                                   Runs Test! 

Analytic approximations were developed in past centuries for very good reasons: 

  -  in the limiting case of diffuse priors, the Bayesian approach is very closely  
         related to maximum likelihood;  
  -  if the  distribution of the residuals from the model is indeed Gaussian, it is  
         closely related to least squares.  

Data Modelling: what are we doing? - 5
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The likelihood function is the posterior probability from Bayes' Theorem.   

Suppose our data are described by the pdf f(x;α), where x is a  variable,  α is a   
parameter (maybe many parameters) characterizing the known form of f.  
                              
                                           We want α 

If  X1, X2, .. XN are data, presumed independent and all drawn from f, then   
the likelihood function is 

From the classical point of view this is the probability, given α, of obtaining the data.   

From the Bayesian point of  view it is  propto prob(α), given the data   
and assuming that  the priors are “diffuse'‘, i.e. they change little  
over the peaked region of the likelihood.   

Maximum Likelihood - 1
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The peak value of L seems likely to be a useful choice of the “best'' estimate of α.  

Formally, the Maximum-Likelihood Estimator (MLE) of α is 

         α   = (that value of α which maximizes  L (α) for all variations of α).   

Often we can find this from 

Maximizing the logarithm is often convenient.  

The MLE is a statistic - it depends only on the data, not on any  
parameters.

Maximum Likelihood - 2
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Maximum Likelihood - Example 1



12

We have (accidentally?) derived the standard OLS, the Ordinary Least Squares  
estimate of y on the independent variable x.  But note that this is:  

  - given that the Yi were Normally distributed with their scatter described by a  
    single deviation σ;  

  - given that a straight-line model was correct.  

We could have started knowing that each Yi had its own σi,  or even that the  
distribution in y about the line was not Gaussian, perhaps say uniform, or  
dependent on |Yi - model|.   

The formulation is identical, but the the ensuing algebra is messier.

Maximum Likelihood - Example 1 continued
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After the MLE estimate has been obtained, it is essential to perform a final check –  
does the MLE model fit the data reasonably?  If it does not  

 - the data are erroneous when the model is known to be right;  
 - the assumed model is wrong; or 
 - there’s been a blunder of some kind. 

There are many ways of carrying out checks; e.g. chi-square test, K-S test, etc. 

The strongest reason for picking the MLE of a parameter is that it has desirable  
properties -  e.g. minimum variance compared to any other estimate, and  
asymptotically distributed around the true value.   

But the MLE is not always unbiased. 

Key feature of MLE : powerful theorems allow simplification. Instances are given  
p132-133 of Practical Statistics for Astronomers, 2nd ed.:  proof of the asymptotic 
property, and that spread is described by the covariance matrix C, which is 
calculated from C = 1/(E[H]), with H the famous Hessian matrix,  
formed via 2nd derivatives of the likelihood function. 

Maximum Likelihood - 2
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Example of this in action:  

A Gaussian of true mean µ, variance σ2, N data Xi.  

The log(likelihood) is 

The latter expression gives the “Hessian matrix''.   

Taking its expectation, then the inverse gives the variance on the estimate of the 
mean as σ2/N, the anticipated result.

Maximum Likelihood - Example 2
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The negative average of the Hessian matrix is even more famous, and is 
important enough to have a name, to which there are millions of references in the 
literature: 

This is the Fisher Information Matrix (Fisher 1935).  

It describes the width of the likelihood function and hence the scatter in the 
Maximum-Likelihood estimators.  

The Fisher matrix can be calculated for various experimental designs as a 
measure of how well the experiment will perform.  

We’ll be back…..

A marker : The Fisher Matrix
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Jauncey showed in 1967 that ML was an excellent way of estimating the slope of the  
number - flux-density relation, the dependence of source surface density on intensity,  
for extragalactic radio sources.   

The source count is assumed to be of the form 
         
                         N(>S) = k S-γ 

where N is the number of sources on a patch of sky with flux densities  greater than S,  
k is a constant, and γ is the exponent (slope in the log N - log S plane), to estimate. 

The probability distribution for S (the chance of getting a source with a flux density near  
S) is then 

and k is determined by the normalization to unity 

(We take the maximum possible flux density to be ∞, small error for steep counts.)  

Maximum Likelihood - Example 3
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Differential source counts generated via Monte Carlo sampling obeying the  source-count  
law N(>S) = kS-1.5. The straight line in each shows the anticipated  count with slope -2.5.  
Left : k = 1.0, 400 trials, Right : k = 10.0, 4000 trials.  The ML results for the slopes are  
-2.52 ± 0.09 and -2.49 ± 0.03, the range given by the points at which the log likelihood  
function has dropped from its maximum by a factor of 2.  
The anticipated errors in the two exponents,  
given by |slope|√M,  are 0.075 and 0.024.

Maximum Likelihood - Example 3 concluded
The log-likelihood is, dropping constants, 

where we have observed M sources with flux densities S brighter than S0.  
Differentiating this with respect to γ to find the maximum  then gives the equation   
for γ, the MLE of γ : 
                                                            - a nicely intuitive result.  No binning! 
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The Figure legend repeated… 

Differential source counts generated via Monte Carlo sampling obeying the  source-count  
law N(>S) = kS-1.5. The straight line in each shows the anticipated  count with slope -2.5.  
Left : k = 1.0, 400 trials, Right : k = 10.0, 4000 trials.  The ML results for the slopes are  
-2.52 ± 0.09 and -2.49 ± 0.03, the range given by the points at which the log likelihood  
function has dropped from its maximum by a factor of 2. The anticipated errors in the two  
exponents, given by |slope|/√M,  are 0.075 and 0.024.

Uh, wait, where did you say that |slope|/√M was the anticipated error in γ? 

We have just one parameter.  The variance on γ is (recall C=(E[H])-1) : 

(The expectation calculation is easy in this case.)  However, we see that the error  
is given in terms of the thing we want to know, namely γ.   

As long as the errors are small we  can approximate them by γ/√M.

ML - Example 2 concluded even more



19

Laplace! Justification follows immediately from the method of ML. If the distribution of  
the residuals is Gaussian, then the log(likelihood) is a sum of squares of the form 

where the ξ are the weights, obviously inversely proportional to the variance on the  
measurements.  

Usually the weights are assumed equal for all the data, and  
least-squares is just that. We seek the model parameters which minimize 

These will just be the maximum-likelihood estimators, and everything carries over -   
asymptotically distributed like a multivariate Gaussian.   

If we do not know the error level (the σ) we do not need to use it, but we will not be 
able to infer errors on the MLE. We will get get a model fit, but  
we will never know how good or bad the model is. 

Least Squares: Regression Analysis
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The matrix of 2nd derivatives defining the covariance matrix of the estimates, the 
Hessian matrix, is often used by numerical algorithms which find the minimum.   

There are many powerful variations on these algorithms (e.g. AMOEBA: see Numerical 
Recipes).  

  
Typically the value of the Hessian matrix, at the minimum, pops out as a by-product of  
the minimization.   

We can use this directly to work out the covariance matrix, as long  as our model is 
linear in the parameters. 

In this case, the expectation operation is straightforward and the matrix does not  
depend on any of the parameters.

Least Squares: Regression Analysis 2
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Suppose our data Xi are measured as a function of some independent variable Zi.   

Then a linear model - linear in the parameters - might be  
                     αz2 + β exp(-z), 
whereas        
                     α exp(- βz)  
is not a linear model. 

Of course a model may be approximately linear near the MLE. 

How close must it be?  This illustrates again the general feature of the asymptotic  
Normality of the MLE  - we can use the approximation, but  

                     we can't tell how good it is.   

Usually things will start to go wrong first in the wings of the inferred distributions,  
and so high degrees of significance usually cannot be trusted unless they have  
been calculated exactly, or simulated by Monte Carlo methods. 

Try working out the MLE using different assumptions on the residuals – e.g. a 
simple exponential, or a t-distribution –  
                       Are your outliers driving the answer?

Least Squares : what’s a LINEAR Model then?
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Least-squares fit through N pairs of (Xi,Yi) by minimizing squares of residuals: 

You can fit any two-parameter curve this way with simple coord transformations: 

Note :  - the residuals cannot be Gaussian for all of these transformations (and may  
                not be Gaussian for any); 
            - it is always possible to minimize the squares of the residuals, but the formal  
                justification? 
            - the one-sample hypothesis tests can be revealing as to which (if any) model  
                fits, particularly the runs test. 

This simple formulation of the least-squares fit for y on x represents the tip of an  
iceberg ……………………

Least Squares - Example: the ‘Regression Line’
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A glimpse of the iceberg - there is an enormous variety of least-squares linear  
regression procedures. Amongst the issues involved in choosing a procedure: 

1. Are the data to be treated weighted or unweighted?  

2.  Do all the data have the same properties, e.g. in the simple case of y on x, is one 
σy

2 applicable to all y? Or does it depend on y? In the uniform σ case, the data are  
described as homoskedastic, and in the opposite case, heteroskedastic. 

3.  Is the right fit the standard ordinary least squares solution y on x (OLS(Y/X))  
or x on y (OLS(X/Y)? Or something different?  

4. If we know we have heteroskedasticity, but with known uncertainties in each Yi  
and each Xi, how do we use this information to estimate the uncertainty in the fit?  

5.  Are the data truncated or censored; do we wish to include upper limits in our fit?  
This is perfectly possible. 

See the thorough papers of Eric Feigleson et al. (1990-1992) – bootstrap and  
jackknife resampling to get the errors, and much more.  
And what is the scientific question?

The Regression Line - 2
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Linear contours of the bivariate Gaussian probability distribution. Left: ρ = 0.05,  a bivariate  
distribution with weak connection between x and y; right: ρ = 0.95, indicative of a strong  
connection. In each case 5000 (x,y) pairs are plotted, selected  at random from the appropriate  
distribution. Two lines are shown as fits for each  distribution, the OLS(X/Y) and the OLS(Y/X).

But we know the answer! A line of slope 45o should result? No. What’s the question? 

If we need ‘the relation’ and we have no prior – then use the bisector line (average  
OLS),  the orthogonal regression line (minimizes perpendiculars),  
or PCA – does not assume which variable is  ‘in control’.

An Example of the Regression Line Example
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♣ a dominant classical modelling process, a simple extension of the chi-square  
     goodness-of-fit test and  closely related to (weighted) least squares methods. 

♣ minimum chi-square statistic has asymptotic properties similar to ML. 

♣ for observational data which can be (or are already) binned, with a model  
     predicting population of each bin. Chi-square statistic describes the  
     goodness-of-fit of the data to the model.  If the observed numbers in each of  
     k bins are Oi, and the expected values from the model are Ei, then  

♣  it’s the squares of the residuals weighted by effectively the variance if the  
       procedure is governed by Poisson statistics. 
  
♣  now minimize the χ2 statistic by varying the parameters of the model. 
   
♣  parameter search is OK as long as there are less than 4; otherwise we need a 
       proper search procedure  - see Numerical Recipes for a great range of these. 

♣  Of these, AMOEBA is good – ‘downhill simplex’ method of  
        steepest descent.

Minimum Chi-Square Method
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♣ confidence limits? (A mysterious sum; nobody but me will tell you its origin……) 
                                                  
                                                    where Δ is from: 

♣ appropriate dof ν to associate = (k -1 - N), k bins, N parameters. 

♣ Debit and loss: (+) additive, so results of different data sets that may fall in  
                                    different bins, bin sizes, or compare different aspects of same  
                                    model, may be tested all at once. 
                             (+) contribution of each bin may be examined - regions of good  
                                    or bad fit delineated. 
                             (+) model-testing for free. Min model should have value of order  
                                    0.5 – remember peak of χ2 distribution is ~ ν when ν  > 4. 
                             (-)  low bin-populations in the chi-square sums will cause severe 
                                    instability. 80%  of the bins must have Ei > 5. 
                             (-)  data-binning is bad. It loses information and efficiency. 
                                    It can unskew skewed distributions.

Minimum Chi-Square Method - 2



27

The table indicates that there is a probabilility c that this region will contain the 
true values of the parameters. It is calculated from 

with P the incomplete Gamma-function (NumRec – Press et al. 2007)

And here is something known only to us ....
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Chi-square testing/modelling: the  
object of the experiment was to  
estimate the surface-density count  
(the N(S) relation) of faint radio  
sources at 5 GHz, assuming a  
power-law N(>S) = KS-(γ-1),  γ and K  
to be determined from the distribution  
of background deflections, the  
P(D) method. The histogram of  
measured deflections is shown right.

The dotted red curve above represents  
the optimum model from minimizing χ2.  
Contours of χ2 in the  γ - K plane are  
shown left. 

With the best-fit model, χ2 = 4 for 7 bins, 
2 parameters; thus dof = 4. Right on.

Minimum Chi-Square Method - Example


