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Data modelling - 
The Bayesian Way

Plumian Professor of Astronomy, after  
many years of teaching maths. 
The first to claim a liquid core for the earth. 
>400 papers on celestial mechanics, fluid 
dynamics, meteorology, geophysics, probability 
plus these books: 

The Earth: Its Origin, History and Physical  
Constitution (1924),  
Theory of Probability (1939)  
Methods of Mathematical Physics (1946) 

Sir Harold Jeffreys, 1891-1989 
Fellow, St John’s College, Cambridge 1914-89

‘Fisher and Jeffreys first took serious notice of each another in 1933. About all they  
knew of each other's work was that it was founded on a flawed notion of probability.’ 
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The introduction to data modelling and/or parameter estimation 

- We started off with a simple example of finding a mean for a Gaussian, knowing that 
      our Gaussian model was correct. 

-We then developed a simple Bayesian methodology, showing that the Bayesian way was 
      straightforward enough…. 

-Except for :  expensive modelling and difficult integrations. 

-Thus we branched off and looked at the analytical approximations: 

                       Maximimum Likelihood Estimation (MLE) 
                       Least Squares fitting – regression lines being our main example 
                       Minimum chi-square fitting 

- We dealt with worked examples for each case. 

- This is the time to look back in more detail at the  
         Bayesian way of modelling, with its consequent benefits. 

A quick look back at last Tuesday ....
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Chi-sq: effect of data on fitted parameters is weighted by its variance.  
i.e. Large variance => reduced effect on solution.  

Consider estimation of the mean, when data on sum have different variances:

Before we leave our friends Maxlik, LS, Chi-Sq ….
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- a particular example of a general technique for constructing linear estimators. 

- optimum weight for observation of std dev σ is just 1/ σ2. 

- all variances equal => we get the simple average. Squares: premium on accuracy. 

- makes the form of chi-sq look plausible. 

- these results also follow from ML analysis, assuming Gaussian  

   distributions.

Our friends Maxlik, LS, Chi-Sq concluded ….
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What are we doing?  

Say we have a model. For example,  

Or, take the Bayesian way - calculate a probability distribution for µ,  
given the data. 

Any data modelling procedure is just a more elaborate version of this.   

Data Modelling; Parameter Estimation
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Suppose our data Zi were measured at various values of some independent variable Xi,  
and we believed that they were“really” scattered, with Gaussian errors, around the  
underlying functional relationship, with (α1,α2, ….) unknown parameters  
(slopes, intercepts, …) of the relationship. 

             µ = µ(x,α1,α2, ….)  

We then have 

and, by Bayes' theorem, we have the posterior probability distribution for the  
parameters 

including as usual our prior information.  We have included µ as one of the “givens''  
to emphasize that everything depends on it being the correct model. 

We are done! We have a probability distribution for the parameters of our model,  
given the data. 

Data Modelling: what are we doing? - 2
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Good features: 

   - it can be used to update models as new data arrive, as the posterior from 
        one stage of the experiments becomes the prior for the next. 

   - we can also deal with unwanted parameters (“nuisance parameters”).   
         

      What are these? Typically we will end up with a probability distribution for various  
      parameters, some of interest (say, cosmological parameters) and some not (say,   
      instrumental calibrations).  We can ‘marginalize out' the unwanted parameters by    
      an integration, leaving us with the distribution of the variable of interest that takes   
      account of all plausible values of the unwanted variables. 

Data Modelling: what are we doing? - 3
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Bad features: 

 - Modelling can be very expensive, always involving finding a maximum or minimum   
      of some merit function. This means evaluating the function, plus its derivatives,  
      many times. The model itself may be the result of a complex computation;  
      evaluating  it over a multi-dimensional grid of parameters is even worse. 

 - Numerical integration may be another difficulty.  Interesting problems have many  
      parameters. Marginalizing these out, or calculating evidences for discriminating  
      between models, involves multi-dimensional integrals - time-consuming, and hard  
      to check.   

      Any analytical help we can get is especially welcome in doing integrations. 
       
      Powerful theorems may allow great simplifications. 

Data Modelling: what are we doing? - 4
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The most important thing to remember about models is - they may be wrong.   

Mistaken assumptions about the distribution of residuals about the model  represent  
the biggest danger.  

                                - The wrong parameters will be deduced from the model.  

                                - Wrong errors on the parameters will be obtained.  
                                   It is important to have a range of models, and always to  
                                   check optimized models against the data.  

                                   Runs Test! 

Analytic approximations were developed in past centuries for very good reasons: 

  -  in the limiting case of diffuse priors, the Bayesian approach is very closely  
         related to maximum likelihood;  
  -  if the  distribution of the residuals from the model is indeed Gaussian, it is  
         closely related to least squares.  

Data Modelling: what are we doing? - 5
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From Bayes,  for model parameters (a vector, in general) α and data Xi, 

However, given the posterior probability of α, we may choose to emphasize  
properties other than the most probable, e.g. the probability that it is > a certain value. 

Two great strengths of the Bayesian approach, plus another one: 
(1) ability to deal with nuisance parameters via marginalization, 
(2) the use of the evidence or Bayes factor to choose between models.  
(3) the asymptotic distribution of the likelihood function itself.  L(α) is  
asymptotically a multivariate Gaussian, with  
covariance matrix given by the inverse of  
the Hessian, evaluated at its peak, namely - 

     F’  = 
  

- evaluated at the peak, namely the MLE of α 

Bayesian Likelihood Analysis
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Let us try this approach by developing a simple two-parameter example, fitting a  
power law to some radio flux density data. The example will reappear in different 
guises, and each time we assume Gaussian statistics for the noise, and 
uniform (diffuse) priors.

Bayesian Likelihood Analysis, continued ....

The expectation value, or average over many realizations of F’, is the  

                                   Fisher Information Matrix.
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Two ‘observations’ of radio-source spectra. Left: We have noisy flux density  
measurements at 0.4,1.4, 2.7, 5 and 10 GHz;  corresponding data  are 1.855,   
0.640,  0.444, 0.22 and  0.102 units. Right: same data but with an offset error  
of 0.4 units as well as random noise.  

Call the frequencies fi and the data Si. These follow a power law of slope -1, but  
have a 10% Gaussian noise (= ε) added. Model for f(S) is k f-γ. 
Each term in the likelihood product is of the form 

The likelihood is therefore a function of k and γ.  

Bayesian Likelihood Analysis - Example 1
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The log likelihood is shown top left.  

The calculated Gaussian  
approximation to the  
likelihood is bottom left. 

 There are at least two possibilities 
for further analysis. 

(1) Which pairs of (k,γ) are, say,  
90% probable?  Usually a very  
awkward integration of the posterior  
probabilities!  Multivariate Gaussian 
approximation to the likelihood is  
much easier to use: - automatically  
normalized + there are analytic  
forms  for its integral over any  
number of its arguments.  The  
areas defined by a  particular  
probability requirement are simple  
ellipses.

Bayesian Likelihood Analysis - Example 1 cont....
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A second possibility: what is the 
probability of k regardless of γ ? 

Thus we have the  posterior  
prob(k, γ | SI ) and we form 

The probability distributions for  
k and γ are shown as the rightmost  
set of diagrams in the figure. 

Often we are not interested in all the parameters we  need to make a  model.   
E.g. If we were investigating  radio spectra, we would “marginalize out” k in  
our example. This is a process of integration over the other  
parameter(s), in this case just k.

Bayesian Likelihood Analysis - Example 1 done
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MARGINALIZATION is just integration of the likelihood function (or Bayesian 
Posterior Distribution) over the useless, non-needed or “nuisance” 
parameters. 

Here, we have rid ourselves of k, the “height” or intensity of the spectrum, because 
we have declared ourselves only interested in the “form” of the spectrum as 
given by the spectral index. 

We may also have to estimate instrumental parameters as part of our modelling 
process, but at the end we marginalize them out in order to get answers 
independent of these parameters. Marginalization will always broaden  the 
distribution of the wanted parameters, because it is absorbing uncertainty in 
the parameters we don't want - the nuisance parameters. Marginalization is a 
projection onto an axis. Hence the broadening. 

Very useful!

Marginalization
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In our radio spectrum example we add  
(artificially) an offset of 0.4 units to each  
measurement;  the spectrum (earlier Fig) 
is much flattened as a result. 

Calculate two possibilities: 

Model A - the simple earlier one, no offsets.   

Model B - a model for the flux densities of  
form  β + k f-γ.  Each likelihood term is then 

We suspect this offset is present, so we place a prior on β of mean 0.4, std dev ε.  
Model B therefore returns a posterior distribution for k, γ and β .  We are not 
actually interested in β  so we marginalize it out. The likelihoods from the two 
models are shown : the more complex model does a better job of recovering the 
true parameters.  

Model A – black contours 
Model B  - dashed contours

Bayesian Likelihood Analysis - Ex 2, Marginalization
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The procedure works because there is information in the data about both  
the instrumental and the source parameters, given the model of  
the spectrum.  ‘Breaks’ or ‘scale errors’ – no chance.  

We need to check the “fit'' of the two models.  In one dimension – been there, done that.   
In many dimensions, things are harder.   

So - another look at use of evidence (Bayes Factor): 

We choose between model A and model B - the only possibilities.   

prob(α | A) is the prior on α in model A, and similarly for B. 

The posterior odds on model A, compared to model B, are then 

and we have to integrate over the range of parameters appropriate to each model.   
This is worth the effort because we get a straightforward answer to the question:  

Which of A or B would it be better to bet on?

Bayesian Likelihood Analysis - Evidence
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In the previous two examples we worked out the likelihood functions L (Xi | k, γ,A)  
for model A and similarly for model B.  

In model B we also have a prior on the offset β: 

We form the ratio of the integrals 

Take pA = pB, an agnostic prior state;  and note we have implicitly assumed  
uniform priors  on k and γ.   

Cranking through the integrations, we get: 

Odds on B compared to A:  about 8 to 1.

Bayesian Likelihood Analysis - Ex 3: the Bet
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An incorrect model?  

Both the deduced parameters and their errors will be wrong.   

But circular reasoning often prevails – a) we guess the model and b) try to assess if     
the deduced parameters are reasonable. 
  

A useful way of expanding the models, as an insurance policy against having the 
wrong one, is to use hierarchical models.  

These make use of  hyperparameters.   

In addition to helping with modelling, these notions are useful in the familiar problem 
of combining sets of data which have different levels of error. 

Bayesian Models of Models
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Example 4: Consider example 2 in which we included some kind of offset in the 
model for each of our flux measurements.  Each term in the likelihood function took 
the form 

assuming that the offset error β is the same for each measurement.   

Before, we supposed that the distribution of  β was Normal, with a known mean and 
standard deviation – a strong assumption.   

Suppose we knew only the standard deviation, but the mean µ was unknown.  The 
likelihood is then

BLA - Example 4 : Hierarchical Models
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µ is now a hyperparameter, described by a hyperprior. So, for hierarchical models,  
Bayes' Theorem takes the form 

where Xi are the data and θ is the hyperparameter (can be a vector).  If we integrate 
out θ, we get a posterior distribution for the parameter which includes the effect  
of a range of models. 

Bayesian Models of Models - Example 4 cont.
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In the radio spectrum example, we now take  
std dev σβ = ε and the prior prob(µ) = const. 

We compute the likelihood surface by  
marginalizing over both µ and β.  

The integrations are OK because we have  
Gaussians, and because we integrate  
from -∞ to +∞. (More realistic integrations,  
over finite ranges, get very messy.) 

In the Fig. we see the likelihood  surface for  
k and γ, compared to the  previous “strong''  
model for which we knew µ. There is a  
tendency for flatter  power laws to be  
acceptable if we do not \know  much about µ.

The log likelihoods for the two  
models; the black contours are  
for the hierarchical model and  
the dashed contours are for  
known µ .

Bayesian Models of Models - Example 4 concluded
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In a more elaborate form of a hierarchical model, we can connect each datum to  
a separate model, with the models being joined by an overarching structural  
relationship. In symbols, Bayes then reads 

In a common type of model we may have observations Xi drawn from Gaussians  
of mean µi,  with a structural relationship telling us that the µi are in turn drawn  
from a Gaussian of mean, say, θ.   

This is a weaker model than the first sort we considered, because we have allowed 
many more parameters, linked only by a stochastic relationship.  In the case of 
Gaussians this is a sizeable industry. 

Bayesian Models of Models, continued
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Example 5 - back to our power-law spectrum.  If we allow a separate  offset βi at  
each frequency,  then each  term  in the  likelihood product takes the form 

and we take again the usual (very weak) prior prob(µ) = const.   

Marginalizing out each βi by an integration is then exactly the same task for  
each I, and having done this  we can compare the likelihood contours with the  
very first model of these data (no offsets allowed).

Bayesian Models of Models - Example 5



25

The likelihood contours of the Fig. are instructive! 

The hierarchical model, by allowing a range of  
models, has moved the solution away from the  
well-defined (but wrong) parameters of the no- 
offset model.   

The hierarchical likelihood peaks quite close  
to the true values of (k, γ) but, but, but ….. 

Error bounds on these parameters are much wider. 
Log likelihoods for the two  
models. The black contours  
are for the simplest model,  
with no provision for offsets.  
Dashed contours are for the  
weak hierarchical model,  
allowing separate offsets  
at each frequency.

Bayesian Models of Models - Example 5 done
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This is a general message: 

Allowing uncertainty in our models may make the answers appear less precise,  
but is an insurance against well-defined but wrong answers from modelling. 

Finally, note broadening the range of models is a useful technique in  
combining data.   

The idea is to allocate weights ξx and ξy  to two datasets in which the ‘normal’  
weights (e.g 1/σ2) appear not to serve. (I.e. the data disagree on the basis of our 
error estimates BUT we still want to use them all.)  

This is a hierarchical model, and the weights are hyperparameters (Hobson,  
Bridle and Lahav 2002). Details and an example follow pp 171-176 of  
Practical Statistics, 2nd ed.

Bayesian Models of Models - Example 5 done


