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Model choice
William of Ockham (or Occam) 

Philosopher, rebel priest  ~1285 to 1349

‘Frustra fit per plura quod potest fieri per pauciora’ – `It is futile to do with more things that 
which can be done with fewer ‘, or ‘plurality should not be assumed without  
necessity’, or in modern English, ‘keep it simple, stupid’)

Entered Franciscan order, studied theology at Oxford, 

Bad ideas => degree witheld. 

Summoned to the Papal Court at Avignon 1324, house 
arrest, branded as heretic, excommunicated. Escaped in 
1328; then chased all over Europe by irate Popes. 

His bad ideas continued to develop – ‘apostolic poverty’, 
the evils of Papal power, the need for civil sovereignty, 
the rule of mediaeval parsimony (principle of economy) 
=> Ockham’s Razor 

Died Munich 1349 in/before the Black Death plague
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The introduction to data modelling and/or parameter estimation 
  
- We reviewed the core of Bayesian data modelling and parameter estimation. 

- Good features (1) updating, (2) marginalization, (3) asymptotic distribution of the  
    Likelihood Function (Fisher Matrix etc, more later) 

- Bad features: (1) expensive (but who cares nowadays), (2) tough integrations (but we will look at how  
   to deal with this) 

- We spent the rest of the time on a two-parameter example, our 5–frequency spectral measurement  
   of a mythical extragalactic radio source. 

- This example showed how we could get rid of an unwanted instrumental effect, the addition of a  
   constant to each flux at each of the 5 frequencies – the process of marginalization. We showed that this  
   worked in the instance of having some prior information (a) presence, (b) constancy at each freq,  
   and (c) some guess of its magnitude. 

- We had a first look at Evidence, and we worked out the odds of whether the naïve model or the model with  
   the offset better described the ‘damaged’ data. The latter wins by odds of 8:1. 

- We looked at further model expansion to guard against assumption of too naïve a model: hierarchical models,  
   hyperparameters – useful for combining data sets giving disparate answers.

Remember where we were?
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An incorrect model?  

Both the deduced parameters and their errors will be wrong.   

But circular reasoning often prevails – a) we guess the model and b) try to assess if     
the deduced parameters are reasonable. 
  

A useful way of expanding the models, as an insurance policy against having the 
wrong one, is to use hierarchical models.  

These make use of  hyperparameters.   

In addition to helping with modelling, these notions are useful in the familiar problem 
of combining sets of data which have different levels of error. 

Bayesian Models of Models
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Example 4: Consider example 2 in which we included some kind of offset in the 
model for each of our flux measurements.  Each term in the likelihood function took 
the form 

assuming that the offset error β is the same for each measurement.   

Before, we supposed that the distribution of  β was Normal, with a known mean and 
standard deviation – a strong assumption.   

Suppose we knew only the standard deviation, but the mean µ was unknown.  The 
likelihood is then

BLA - Example 4 : Hierarchical Models
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µ is now a hyperparameter, described by a hyperprior. So, for hierarchical models,  
Bayes' Theorem takes the form 

where Xi are the data and θ is the hyperparameter (can be a vector).  If we integrate 
out θ, we get a posterior distribution for the parameter which includes the effect  
of a range of models. 

Bayesian Models of Models - Example 4 cont.
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In the radio spectrum example, we now take  
std dev σβ = ε and the prior prob(µ) = const. 

We compute the likelihood surface by  
marginalizing over both µ and β.  

The integrations are OK because we have  
Gaussians, and because we integrate  
from -∞ to +∞. (More realistic integrations,  
over finite ranges, get very messy.) 

In the Fig. we see the likelihood  surface for  
k and γ, compared to the  previous “strong''  
model for which we knew µ. There is a  
tendency for flatter  power laws to be  
acceptable if we do not know  much about µ.

The log likelihoods for the two  
models; the black contours are  
for the hierarchical model and  
the dashed contours are for  
known µ .

Bayesian Models of Models - Example 4 concluded
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In a more elaborate form of a hierarchical model, we can connect each datum to  
a separate model, with the models being joined by an overarching structural  
relationship. In symbols, Bayes then reads 

In a common type of model we may have observations Xi drawn from Gaussians  
of mean µi,  with a structural relationship telling us that the µi are in turn drawn  
from a Gaussian of mean, say, θ.   

This is a weaker model than the first sort we considered, because we have allowed 
many more parameters, linked only by a stochastic relationship.  In the case of 
Gaussians this is a sizeable industry. 

Bayesian Models of Models, continued
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Example 5 - back to our power-law spectrum.  If we allow a separate  offset βi at  
each frequency,  then each  term  in the  likelihood product takes the form 

and we take again the usual (very weak) prior prob(µ) = const.   

Marginalizing out each βi by an integration is then exactly the same task for  
each I, and having done this  we can compare the likelihood contours with the  
very first model of these data (no offsets allowed).

Bayesian Models of Models - Example 5
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The likelihood contours of the Fig. are instructive! 

The hierarchical model, by allowing a range of  
models, has moved the solution away from the  
well-defined (but wrong) parameters of the no- 
offset model.   

The hierarchical likelihood peaks quite close  
to the true values of (k, γ) but, but, but ….. 

Error bounds on these parameters are much wider. 
Log likelihoods for the two  
models. The black contours  
are for the simplest model,  
with no provision for offsets.  
Dashed contours are for the  
weak hierarchical model,  
allowing separate offsets  
at each frequency.

Bayesian Models of Models - Example 5 done
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This is a general message: 

Allowing uncertainty in our models may make the answers appear less precise,  
but is an insurance against well-defined but wrong answers from modelling. 

Finally, note broadening the range of models is a useful technique in  
combining data.   

The idea is to allocate weights ξx and ξy  to two datasets in which the ‘normal’  
weights (e.g 1/σ2) appear not to serve. (I.e. the data disagree on the basis of our 
error estimates BUT we still want to use them all.)  

This is a hierarchical model, and the weights are hyperparameters (Hobson,  
Bridle and Lahav 2002). Details and an example follow pp 171-176 of  
Practical Statistics, 2nd ed.

Bayesian Models of Models - Example 5 done
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The Bayesian way provides a principled scheme for making choices between  
models. 

Classical testing: say fit a model via LS, and then use Χ2 to decide if we 
should reject it. But what if  
    - the deviations are likely?  
    - several models are available? 

NB if a model is correct, the significance level from a Χ2 test (or any  
significance test!) will be uniformly distributed between 0 and 1. 

For model H and data D, a significance level from min Χ2 tells us about the 
                conditional probability prob(D|H)  
But we want  
                         conditional prob (H|D) 

We can’t get this from prob(D|H) without an application of Bayes’ Theorem  
and its involvement with prior probabilities.

Data Modelling: Choosing the Model
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Suppose we have just two models H1 and H2, with parameter sets α and β.  

Set of data D. Then Bayes’ Theorem for the posterior probs: 

Note we’ve doubled up on priors!  

 - priors on the models – our degree of belief that we’ve got it right 

 - priors on parameters – here we put in our known contraints or beliefs 

E is normalizing factor to make LHS a probability – its importance is coming…..

Model Choice and Bayesian Evidence



13

We can find E : 
 

1 

2 

3

Model Choice and Bayesian Evidence 2
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- last three equations encapsulate the Bayesian model choice method 

- key ingredient – BAYES FACTOR, a ratio of the terms sometimes called 
  EVIDENCE 

- EVIDENCE terms are the average of the Likelihood Function over the Prior 
  on the parameters 

- relative magnitude of the EVIDENCE for each model determines its posterior 
  probability  

- normalizing term E is sum of EVIDENCE terms, each weighted by Prior on 
  relevant model

Model Choice and Bayesian Evidence 3
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Simple example: 

Prior odds P are large – i.e. from previous experience, H2 is probably correct 

But data are much more likely under H1, so we have a small Bayes factor B

If Bayes factor is small enough it will outweigh the large prior odds, so that 

prob(H1) = 1/(1 + BP) ≈ 1 

Thus the data have modified the conclusion: 

  H1 is now probably correct

Model Choice and Bayesian Evidence 4
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NB: parameter priors are within the evidence integrals. Significance? 

Consider case of narrow likelihood functions, and single-parameter models, α for 
H1 and β for H2, with ranges Δα and Δβ, so that prob(α)=1/Δα and prob(β)=1/Δβ.  
This gives 

BP = (ratio of likelihood integrals) x (Δα/ Δβ) x (ratio of prior odds) 

In our previous example, the prior odds ratio was large (H2 favoured). Suppose our 
prior about its parameter β is vague (broad) compared to the H1 parameter α, 
i.e. Δα/ Δβ << 1. Then the data have to work very strongly in favour of H2 for it 
to come out with the larger posterior probability, much harder than if Δα ≈ Δβ. 

This is the so-called Ockham factor at work. 

The model H1 is ‘simpler’ than H2 because it is more specific, less prior range, 
and this ‘simplicity’ boosts its posterior probability. It’s a built in mechanism –  
there’s no real factor involved – we only got one by the above shortcut. 

Model Simplicity and the ‘Ockham Factor’
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The heart of the matter is the integration of a LikeFn over its params and prior:

So: find the max posterior prob, evaluate H and determinant. Works well on 
smallish problems. Must keep track of normalizing factor of priors - brings Ockham 
factor into play.

Avoiding the Integrations
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We are trying to decide if a single spectral line is Gaussian or Lorentzian. 
Parameters in each case: baseline level, height, width, centre. Gaussian model H1, 
Lorentzian H2.

Generate data from the Gaussian model, adding Gaussian random noise 

Then fit Gaussian and Lorentzian profiles, using the known noise std deviation and 
using Least Squares => sums of squared residuals, normalized. 

Assume flat priors, same ranges for all params. Assume each model equally likely. 

Run MC simulations, and   

Compute Bayes Factor by Laplace Approximation.

Let’s try it ....
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We are trying to decide if a single spectral line is Lorentzian or Gaussian. Four 
parameters in each case: baseline level, height, width, centre. Gaussian model is 
H1, Lorentzian is H2.

Signal-to-noise ratio at peak of line = 5, Lorentzian simulation in left panel, 
Gaussian in right. Lorentzian fit favoured in left panel, odds 30:1. Gaussian fit 
favoured in right panel, odds 100:1.

What?? What do you mean it’s OK? The eye says these 
conclusions are probably in the right senses - but this 
level of certainty? No way.  

BF is a statistic : the odds show much variation.

What do we get?
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Signal-to-noise ratio at peak of line = 5. Lorentzian fit favoured in left panel, odds 
30:1. Gaussian fit favoured in right panel, odds 100:1.

BF is a statistic : the odds show much variation. And note size of odds!

Run the exp’t many times: the picture on 
the left emerges. Red=Gaussian, upper/
lower lines are 25 and 75 percentiles. 
Black=Lorentzian, Central line=median, 
Blue lines mark odds on Gaussian that are 
even, e2:1, e3:1,e4:1 

Ability to pick Gaussian when true is POOR 
at low s/n. Just like classical testing; just like 
real life. Need goodness-of-fit test.

Bayes Factor is a Statistic ....
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The ‘Akaike’ and ‘Bayesian’ Information Criteria:

Two other commonly used criteria: AIC and BIC, defined as:

- First term is maxlik; second is penalty term, k params, N data points 

- Only relative values used; pick model with smallest AIC or BIC 

- Easier to use than Bayesian analysis with integration to get Evidence 

- BIC is an approx to full Evidence 

- With same no. of params, diffuse priors, approxs are as good as full Bayes 

- with different param numbers, differences emerge with even simple priors 

- large N + Gaussian errors => minimum Χ2

Other Methods of Model Choice
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Add some curvature to baseline of Lorentzian model; offset its wider wings to 
make it more competitive with Gaussian model. 

Assume same priors on line-shape params 

Assume baseline term is (β5x2 + β6x4), flat priors of widths  Δβ5, Δβ6 

Rough prior: max in both terms < line height, ie Δβ5=10-2 and Δβ6=10-4 

The detailed sum shows that the odds on the Gaussian get shortened by 

about 3 orders of magnitude - We are close to evens now! 

The unequal number of parameters highlights how the Bayes Factor approach 
differs fundamentally from minimum Χ2.  

Now the priors really matter. 

Akaike and Bayesian IC: Example


