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Doing Bayesian Integrals
The Reverend Thomas Bayes (c.1702 – 1761) 

Philosopher, theologian, mathematician

Presbyterian (non-conformist) minister Tunbridge 
Wells, UK 

Elected FRS, perhaps due to a paper defending(!) the  
works of Isaac Newton. His bibliography contains one 
other paper, a theological discussion of happiness. 

‘An Essay Towards solving a problem in the Doctrine of 
Chances’ (1763), put forward to the Royal Society by 
Richard Price, after Bayes’ death.
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- We looked again at broadening our range of models via hyper parameters 

 - We then looked at the case of two models, and Bayesian evidence, working out the            
   Bayes Factor as the full Bayesian way of choosing between models 

- We considered a simple but illuminating example 

- We considered model simplicity and the so-called Ockham factor, which is not a          
real factor 

- We had a look at how to avoid the serious integrals, via the Laplace approximation 

- We tried it out on trying to choose between Gaussian and Lorentz line profiles in the 
face of noisy data – and we found that it worked 

- but it showed us that the BF is a statistic! Surprise! And subject to uncertainty… 

- We looked at two other criteria, simpler than the BF, namely AIC and BIC, and we 
   expanded our line-profile example to see how these worked.

We were sorting out Bayesian model choice ....
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Suppose we have just two models H1 and H2, with parameter sets α and β.  

Set of data D. Then Bayes’ Theorem for the posterior probs: 

Note we’ve doubled up on priors!  

 - priors on the models – our degree of belief that we’ve got it right 

 - priors on parameters – here we put in our known contraints or beliefs 

E is normalizing factor to make LHS a probability – its importance is coming…..

Model Choice and Bayesian Evidence: review
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We can find E : 
 

1 

2 
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Model Choice and Bayesian Evidence 2
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- last three equations encapsulate the Bayesian model choice method 

- key ingredient – BAYES FACTOR, a ratio of the terms sometimes called 
  EVIDENCE 

- EVIDENCE terms are the average of the Likelihood Function over the Prior 
  on the parameters 

- relative magnitude of the EVIDENCE for each model determines its posterior 
  probability  

- normalizing term E is sum of EVIDENCE terms, each weighted by Prior on 
  relevant model

Model Choice and Bayesian Evidence 3
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Very important use of Monte Carlo! 

Here’s a simplistic way to start: 

Suppose we have a probability distribution f(x) defined for a  <  x  <  b 

 - Draw N random numbers X, uniformly distributed between a and b. 
  
 - Calculate the function at these points.  

 - Add these values of the function up, normalize - and 

This is Monte Carlo integration in its simplest form, grossly inefficient because we 
may not be sampling at points where the function has much value> 

But if the Xi are drawn from the distribution f itself, then they will sample the regions  
where f is large and the integration will be more accurate.  This technique is called  
importance sampling.

Monte Carlo Integration
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Left – the result, using N=106.  Right – using +/- 10σ, and varying N. The different 
curves are the results of different starting indices for the random-number generator. 
This mindless sum shows how stable MC integration is for well-behaved functions; we  
have uniformly sampled +/- 10σ, and the function is really a spike between +/- 1σ.

Monte Carlo Integration: Example - Gaussian

(if σ = 1)
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If the Xi are drawn from the distribution f itself, then they will sample the regions 
where f is large and the integration will be more accurate. 

Suppose f is a posterior distribution of some parameter, and we want the expectation 
value of some function g of this parameter. If we can get random Xi drawn from f then 
the MC integral is simply 

- because if the Xi are drawn from f, so f(Xi) is uniformly distributed 0.0 -> 1.0. 
Works for multivariate case. But how to get Xi?  

Importance Sampling 1
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Take a random number Yi from h, 
a distribution ~like f. Then 

We need this h function to ‘cover’ f so that the denom does not explode.  
Thus if f is a posterior from a Bayes solution we can estimate the Evidence integral: 

Useful if we can find an OK h – often the famous multivariate Gaussian or t dist. 

But frequently we are in many dimensions. Because of how volume multiplies with 
dimensions a large fraction of the random numbers are wasted, i.e. f(Yi) is very small  
in the above numerator. We need a better way.

Importance Sampling 2
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We want to generate random numbers from f/C, C unknown, f multivariate 

Metropolis-Hastings algorithm invented to compute equation of state of 
interacting particles in a box; the algorithm produces thermal equilibrium. 

If f is the un-normalized distribution of interest (‘target’) and h a suitable 
transition probability distribution (the ‘proposal’) then 

1. Draw a random number Xi from h 

2. Draw a random number Ui, uniformly distributed 0.0 to 1.0 

3. Compute α, the minimum of 1.0 and f(Xi)/f(Xi-1) 

4. if Ui < α then accept Xi 

5. Otherwise set Xi = Xi-1 

The random numbers delivered will (eventually) be randoms drawn from f/C. 
These randoms are generated sequentially and dependently. 

The string is a Markov Chain => Markov Chain Monte Carlo, MCMC

The Metropolis - Hastings Algorithm
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h engineers the jump from position xi-1 to position xi. 

In original algorithm h must be symmetric: 

      - either in the sense that the prob of a reverse jump is the same 

      - or if f depends only on absolute value of difference (xi – xi-1) 

A Gaussian proposal would be of this type. 

Acceptance rates of 0.25 to 0.5 give good balance: 

      - proposal too narrow => too much correlation; chain must be thinned 

                                => structure of target may not be explored  

     - proposal too wide => excessive rejection rate, much comp time 

  

A good proposal function is the key  

The Proposal Function
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Burn-in: serial correlation, so starting point matters, but becomes lost 
during the burn-in period. 

Has burn-in been achieved? Has target region been adequately sampled? 

For former: consider l chains each n long (say the last n numbers from a 
much longer chain which may also have been thinned).  

1. Look at all within-chain std devs; these should not be evolving with n 

2. The ratio of the std dev of the l means to the individual std devs should 
be 1/√n. (This needs proving, as we’re not dealing with indep samples.)

Markov Chain Properties 1
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Failing the basic tests? 

1. Lengthen burn-in period 

2. Examine proposal for width, rejection rate, extent of correlation 

3. Vary the thinning 

4. Look at power spectrum of number => severity of correlations,                      

   thinning requirements 

Markov Chain Properties
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We’ll integrate 1/(1 + x4) 

Take proposal as simple Gaussian centred at current value in chain. Make chains 
10000 long; discard first 25% of each, thin by taking every 15th. Two cases: 

1. Narrow proposal (σ=1). 

- 60% success in making transition 

- many repeats: std dev scatter 18% 

2. Wide proposal (σ=10)  

- 90% failure to make transition 

– but maybe less correlated? 

- many repeats std dev scatter 4% 

Power spectrum shows why – as expected the chain from the narrow proposal 
shows much correlation, even after thinning, and this outweighs having more 
distinct numbers in the chain. Clear inefficiency: we would expect 1% scatter in 
std dev from 10000 samples – but much better than simple MC integration! 

wide

narrow

Simple Example
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Straightforward in one dimension? But we usually want random numbers from a 
multivariate f(α, β, γ, ….); much more likely in the Bayesian context.  

Same arguments for the M-H algorithms, but suitable proposal distributions? Hard. 

So – the Gibbs sampler 

       1. Guess at starting vector (α0, β0, γ0, ….) 

       2. Draw α1 from f(α0, β0, γ0, ….) 

       3. Draw β1 from f(α1, β0, γ0, ….), γ1 from f(α1, β1, γ0, ….), etc. 

       4. => first multivariate sample

The Multi-Dimensional Problem 1
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We may use one iteration of M-H to make each draw from f, or find some other 
simpler way to sample from the distributions. 

Check burn-in! May be slowed considerably via correlation between variables. 

It can be useful to change to variable combinations which are less correlated, ie 
approximations to Principal Components. 

This combo equips us to do the multi-dimensional integrals often needed in 
Bayesian problems, e.g. marginalizations, and deriving stats, eg  means, 
percentiles.

The Multi-Dimensional Problem 2
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All this and the problem is not solved: f is a prob dist, but we only know f/C. 
We can get samples efficiently from f, but we can’t get rid of C this way. 
The evidence E is a number, the integral over parameters of the product of the 
likelihood and its priors:

Computation of Evidence by MCMC
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To illustrate both the Gibbs sampler and thermodynamic integration, we generate 
numbers following a bivariate Gaussian

Example - M-H + Gibbs + thermo-integration

The prior is non-zero over the whole region where g has any signal; we need it. 
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To illustrate both the Gibbs sampler and thermodynamic integration, we generate 
numbers following a bivariate Gaussian

The prior is non-zero over the whole region where g has any signal; we need it. 

Example - M-H + Gibbs + thermo-integration
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M-H + Gibbs + thermo-integration: Example, con’t

The integral of gp is to be calculated with our random numbers.  

(We could do this case with plain numerical integration because there are only two 
variables.) 

The (x,y) pairs are generated with the Gibbs sampler, with a Gaussian of  

standard deviation 5 as the univariate proposal distribution.  

What do we get?
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Success rate ~ 40%. 

Chain of 100,000, thinned to 1 in 100, gives correl coeff within 0.5% of 0.90; LH fig 
shows theoretical contours and some of the chain samples. Power spectrum ~ white. 
Variance in y estimated by chain to within 5%. 

Thermo integration (RH fig) uses 10 values of γ 0.0 – 1.0. For each value, a chain is 
generated and the average of ln g is calculated, g in the role of the likelihood function 
described in the derivation. Well-behaved curve which when integrated 0.0 – 1.0 
gives values like 0.099, close to true value of 0.10.

M-H + Gibbs + thermo-integration: Example, con’t
What do we get?


