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Detection

“To many in the statistical world "Student" was regarded as a statistical advisor to Guinness's brewery,  
to others he appeared to be a brewer devoting his spare time to statistics. ... though there is some  
truth in both these ideas they miss the central point, which was the intimate connection between his  
statistical research and the practical problems on which he was engaged. ...“

William Sealey Gosset 
1876 - 1937

Best known for his “Student’s” t-test, 
devised for handling small samples for 
quality control in brewing.
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- We looked again at brute-force MC integration. 

- We discussed importance sampling as a more efficient way for difficult integrations. 

- This led in to the efficient importance-sampling technique known as  Markov Chain       
   Monte Carlo. We walked through the algorithm: it is simple, but there are buts: 

 1) The proposal, which moves us forward in the chain, requires thought: 
       - ‘broad’ proposals lead to low efficiency, but quick burn-in and less correlation 
       - ‘narrow’ proposals lead to long burn-in and serious coherence problems 
 2) We need to generate several chains for intercomparison of variance.  
       
- We illustrated all this with a simple example. 

- We considered the multivariate case and introduced the Gibbs sampler. 

- With this we went back to our Bayesian integrals, and considered an example with both  
   MCMC and thermodynamic integration to integrate the non-normalized  
  multivariate function f/C. 
                       

Any recollection of what I was saying last lecture?
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Remember our first example 
f(x) = 1/(1+x4)

And remember the MCMC algorithm: 

If f is the un-normalized distribution of interest (‘target’) and h a suitable 
transition probability distribution (the ‘proposal’) then 

1. Draw a random number Xi from h 

2. Draw a random number Ui, uniformly distributed 0.0 to 1.0 

3. Compute α, the minimum of 1.0 and f(Xi)/f(Xi-1) 

4. if Ui < α then accept Xi 

5. Otherwise set Xi = Xi-1 

This may look simple to program – but there is a trap  

But before leaving MCMC (temporarily) ....
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func is 1/(1+x4) 

proposal is random pick from 
a Gaussian

sigma = 0.2 
burn-in ~2000 

7% rejected 
coherence

sigma = 1.0 
burn-in ~ 0? 

34% rejected 
coherence

sigma = 10.0 
burn-in = 0? 

89% rejected 
no coherence?

Before leaving MCMC (temporarily) continued ....
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- preliminary to much else that happens in astronomy, whether it means   
    locating a spectral line, a faint star or a gamma-ray burst.   

-  we take it here as locating + confident measurement of some sort of   
    feature in a fixed region of an image or spectrum. 

-  elusive objects or features at the limit of detectability tend to become the  
    focus of interest in any branch of astronomy. 

Detection - what do we mean?
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- non-detections are important because they define how representative any   
     catalogue of objects may be. This set of non-detections can represent vital        
     information in deducing the properties of a population of objects. 

 - if something is never detected, it’s a datum, and can be exploited statistically;   
     every observation potentially contains information, constrains emission energy. 

- it is possible to deduce distributions of parameters, e.g. luminosity function,  
     from the detections/catalogue approach, or directly from fairly raw sky data.  

 - we consider both – but detections first. 
 

Detection - what do we mean? continued…
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When we say “We've got a detection''  we generally mean “We have found what  
we were looking for'‘ – this is OK  at ‘reasonable’ signal-to-noise.   
  
E.g. comparison of model point-spread functions with the data - but in the case 
of extended objects? – wider range of models needed. 

A clear statistical model is required.  The noise level (residuals  from the 
model) may follow Poisson (√N)  statistics → Gaussian for N > 10.  

The statistics depend on more than the physical and instrumental model.  How 
were the data selected?  

E.g. picking out the brightest spot means a special set of  data.  The peak pixel 
will follow the distribution appropriate to the maximum value of a set of, say,  
Gaussian variables. Adjacent pixels will follow a less well-defined distribution. 

Detection - a Model Fitting Process 1
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Simulation – “Model sources'' are strewn in the real map, and the reduction 
software (detection-finding algorithm) is given the job of telling us what fraction is 
detected.  

These essential large-scale techniques are very necessary for handling the detail  
of how the observation was made, because we may be hazy on this! 

Example: radio astronomy synthesis images: noise level at any point depends on:  
    - gains of all antennas,  
    - noise of each receiver,  
    - sidelobes from whatever sources happen to be in the field of view,  
    - map size, tapering parameters, ionosphere, cloud….. 

These input data are either known incompletely or not known at all!

Detection - a Model Fitting Process 2
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What do we really want from the survey?  

        -  Are we more concerned with detecting as much as possible  
             (completeness) ? 
        - Are we more worried about false detections (reliability) ?   
        - What are we going to do with the detections ? E.g. : 
             (1) will we publish a complete set of posterior probabilities of  
                    observed parameters everywhere? (unlikely) 
             (2) or just the covariance matrix, as an approximation? 
             (3) or marginalized signal-to-noise, integrating away nuisance parameters? 

From the classical point of view, if we are trying to measure a parameter α, the  
likelihood sums up what we have achieved: 

Detection - the simpler classical approach 1
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Suppose that α is a flux density and we wish to set a flux limit  for a survey. We 
record catalogue detections only when our data exceed this limit slim.  Then two 
properties of the survey useful to know are reliability and completeness:

Detection - the simpler classical approach 2



11

Suppose our measurement is of s and the noise on the measurement is Gaussian,  
of unit std dev.  The source has a “true'‘ flux density s0, measured in units of the  
std dev.   

We then have respectively for the pd  
of the data given the source, and for the pd  
of the data when there is no source: 

Integrating these functions from 0 to s makes  
it easy to plot up the completeness against  
the false-alarm rate, taking the flux limit as a  
parameter.   

For source flux densities in units of σnoise  

ranging from 1 unit (lower right) to  
4 units (upper left). Flux limits are  
indicated by dots, from 0 on right to 3  
on left. A 4σ source and a 2σ flux  
limit give a false-alarm rate of 2% and  
a completeness of 99%.

sig=1.0
2.0

3.0
4.0

3                    2            1      0

Classical Detection - Example
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Classical Detection - Example continued

So how does this work? How were these curves computed? Let us say that the noise is 1σ, 
and that our survey detection limit is set at 2σ. (This is extremely low as we shall see.) Focus 
on the line for sources of 3σ in size. 

(a) How complete is our survey for sources that are truly 3σ high? About 80%. 

(b) How reliable are sources detected in this way? Or conversely, what is the false   
      alarm rate? About 7%. 

High completeness goes hand in hand with a high false alarm rate.  However there are 
satisfactory combinations for flux limits and source intensities of  a few  standard 
deviations.  Problem - outliers! 

Proportion of reals

Proportion of fakes
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As intro to Bayes and detection, consider first an example of the simple case  
in which we ignore the possibility that no source might be present in our field. 

1.  Radio telescope, randomly-selected position in the sky.  

2. The data are D, namely the single measured flux densities f : Gaussian  
     distribution about true flux density S with a variance σ2.  

3. The extensive body of radio source counts also tells us the prior for S; 
     approximate this by the power law prob(S) = K S-5/2. (K normalizes the counts 
     to unity; there is presumed to be one source in the beam at some level.) 

4. Probability of observing f when the true value is S :  

5. From Bayes : with n independent flux measurements fi then 

Bayesian Detection - Example 1
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Suppose that  

 - the source counts were known to extend from 1 to 100 units,  

 - the noise level was σ = 1, and 

 - the data were 2.0, 1.3, 3.0, 1.5,  2.0 and 1.8.  

The Figure shows posterior probabilities  
for the first 2, then 4, then 6 measurements.  

The increase in data gradually overwhelms  
the prior, 

But the prior affects conclusions markedly  
(as it should) when there are few  
measurements.

Power-law prior, Gaussian error dist.   
Posterior probability distribution for 2,  
4, 6 measurements shows that the form 
approaches Gaussian as number of data  
increase. 

True value of mean = 1.93.

Bayesian Detection - Example 1 concluded
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Now consider a more realistic description of detection. 

We have 
               prob(data | a source is present, of flux density s)  
and         prob(data | no source is present).                                

(1) Take the prior probability that a source, intensity s, is present in the measured  
area to be εN(s), where N(s) is a normalized distribution, the probability that a single  
source  will have a flux density s.  

(2) The prior probability of no source is (1- ε) δ(s); δ is a Dirac delta function. 
   
Then the posterior probability 
                      prob(a source is present, brightness s | data)  
is given by 

Integrating this expression over s gives the probability that a source is present,  
for given data.

Bayesian Detection - the fuller picture
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Take the noise distribution to be Gaussian and take a flat prior N(s).   

The value of ε reflects our initial confidence that a source is present at all, and so in many cases  
will be small.  

The Fig. shows that the posterior distribution of flux density s peaks at the value of the data, as 
expected; the role of ε is to suppress our confidence of a detection in low s/n cases.  4-σ 
data points mean detection with high probability. 

The top left panel shows the probability of 
a detected source of flux density s; the 
curves correspond to measurements of 1 to 
4 units (unit = 1 noise std dev) A prior ε 
=0.05 was used. On the top right these 
curves are integrated to give the 
probability of detection at any positive 
flux density, as a function of the data 
values. The curves are for ε =0.5,0.05  
and 0.005.  The bottom panels show the 
results for the power-law prior, truncated 
at 0.1 unit.

Bayesian Detection - Example 2
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Using a power-law prior  N(s) = k s-5/2  gives results (right) similar to the previous example (left), 
but : 

         recognizes the possibility that no source might be present.   

The rarity of bright sources in this prior  now means that we need a better s/n to achieve the  
same confidence that we have a detection.

Bayesian Detection - Example 2 concluded
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1. Bayesian treatment of detection gives a direct result;  we may read off a     
       suitable flux limit that will give the desired probability of detection.  

2. But – the confusion, and confusion limit  - images or spectral lines crowd 
together, overlap as we reach fainter.  Several different objects may 
contribute to to the total flux at any coordinate. Even if only one ‘object’ is 
present, with a steep N(s) it will be more likely that the flux results from a 
faint source plus a large upward noise excursion, rather than vice-versa.  
(The ‘Eddington bias’.)   

3. Then we only expect to measure population properties -- parameters of the 
flux-density distribution N(s) or its spectral equivalent. We are getting in to 
the confusion regime,  a concept we’ll consider later. Beware of the return 
of hyperparameters! 

Detection - summary 1
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4. Detection is a modelling process: 
           - it depends on what we are looking for, 
           - how the answer is expressed depends on what we want to do  
             with it next.   

5. The simple idea of a detection, making a measurement of something  
        that is really there, applies when signal-to-noise is high and  
        individual objects can be isolated from the general signal.  At low s/n,       
        measurements can constrain  population properties, with the notion  
        of “detection" disappearing, in two senses: 
         
       We drop into the confusion level, and/or we deal with censored data.

Detection - summary 2


