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Malmquist bias and Eddington bias 
Luminosity functions

Yet  another Fellow of St Johns, Cambridge, along with Yule, whose textbook was the basic stats book 
for the first  half of the 1900’s.  In 1937, Yule’s book became Yule and Kendall, and it ran to 14 editions 
by 1950.  Chair of Statistics, LSE, 1949-1961. Many papers on time series, rank order. Resigned to  
become Chairman of SciCon, an early computer company.  ‘Retired’ at age 65, and asked by 
the UN to take on Directorship of the World Fertility Survey. Knighted for ‘services to statistics’ in  
1974;  awarded UN Peace Medal in 1980.

Maurice G. Kendall 
1907-1983

of Kendall and Stuart, “Advanced Theory 
of Statistics”; Kendall published the first 
two volumes alone, in 1943 and 1946.
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We considered detection - it is a data-modelling process 

- as a working definition we adopted location, and confident measurement, of some  
    sort of feature in a fixed region of an image or spectrum. 

- non-detections are also important; we can incorporate the information these  
    contain with statistical measures. Two types of these – upper limits, and the  
    confusion continuum. 

- clear model required; we can’t make it up as we go along. 

- we considered concepts of completeness and reliability; these are mutually  
    exclusive at some point, but satisfactory compromise can be reached. 

- we began with classical detection via likelihood, but as conditional probabilities  
   are involved at the start, why not go Bayesian? A couple of Bayesian examples.... 

- we went on to introduce luminosity distributions and  
   luminosity functions……. 
                        

Way back last Tuesday?
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1. The simple idea of a detection, making a measurement of something that is really  
        there, applies when signal-to-noise is high and individual objects can be  
        isolated from the general signal.  At low s/n, measurements can constrain   
        population properties, with the notion of “detection" disappearing, in two senses: 
        we drop into the confusion level, and/or we deal with censored data. 

2. Detection is a modelling process: 
           - it depends on what we are looking for, 
           - how the answer is expressed depends on what we want to do with it next.   

3. There is competition between completeness and reliability, even in the classical sense; 
Bayesian analysis can help to sort this out. 

      

Detection summary, again (1)
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4.  In fact, Bayesian treatment of detection gives a direct result;  we may read off a 
suitable flux limit that will give the desired probability of detection.  

5. At the ‘limits’ of detection – the confusion, and confusion limit  - images or spectral lines 
crowd together and overlap as we reach fainter.  Even if only one ‘object’ is present, with 
a steep N(s) it will be more likely that the flux results from a faint source plus a large 
upward noise excursion, rather than vice-versa.  This effect plays havoc with N(S), the 
source count, and in the limit it may mean that NO source plus an upward noise deflection 
is more likely than a source detection. The effect that bad flux estimates have on N(S) is 
known as Eddington bias (Eddington 1911). 

         

6.  Eddington bias makes almost as much of a mess of surveys as the  
     better-known Malmquist bias, which I now discuss. 

      

Detection summary, again (2)
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Typically, a body of astronomical detections is published in a catalogue.  
Objects are in this catalogue on the basis of some clear criteria. 

Most astronomical measurements are affected by the distance to the object.   
e.g.  proper motion, apparent intensity, ellipticity. 

We measure an apparent quantity X and infer an intrinsic quantity by a relationship  
Y=f(X,R)  where R is the distance to the object in question.  The function f may be 
complicated, for reasons of both observation and relativistic geometry. 

E.g. observe a flux density S and infer a luminosity l given by l = S R2.  The  
smallest value of S we are prepared to believe is Slim; if  S < Slim the object is  
not in our catalogue or sample. 

Catalogues, Selection Effects (1)
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Our objects (=“galaxies'') are assumed to be drawn from a luminosity function ρ(l),  
the number of objects  within Δl about l  per unit volume.  Using only our  
catalogue set of measurements l1, l2, … however, we will not be able to reproduce ρ.   
Instead, we will get the luminosity distribution η, where 

V(l) is the volume within which sources of intrinsic brightness l will be near enough to find  
their way into our catalogue.  We get 

Obviously η will be biased to higher values of luminosity than ρ. This sort of bias  
occurs in a multitude of cases in astronomy, and is called Malmquist bias.

Catalogues, Selection Effects (1)
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Example 1: The luminosity function of field galaxies is well approximated by the  
Schechter function 

in which we take γ = 1 and l*  = 10 for illustration.   
To obtain the form of the luminosity distribution  
in a flux-limited survey, we multiply the Schechter  
function by l3/2.  The differences between the  
luminosity function and luminosity distribution are  
shown. 

Malmquist bias – a serious issue in survey 
astronomy. The bias depends on the (probably 
unknown) form of the luminosity function. It 
passes on all kinds of unwelcome information.

The luminosity function ρ (steep curve) 
and the (flat-space) luminosity  
distribution, plotted for the Schechter  
form of the luminosity function.

Malmquist Bias + Example
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Malmquist bias: intrinsically luminous objects can be seen within proportionately much 
greater volumes than small ones. Thus in flux-limited samples the luminous  objects of the 
sample will tend to be further away than the faint ones - there is an in-built distance-
luminosity correlation. 

The luminosity - distance correlation is widespread, insidious and very difficult to  
unravel.  It means that for flux-limited samples, intrinsic properties correlate with  
distance. 

Two unrelated intrinsic properties will appear to correlate because of their 
       mutual correlation with distance.  Plotting intrinsic properties -- say, X-ray  
       and radio luminosity --  against each other will be very misleading.  
   

Malmquist Bias and the Luminosity-Distance Correlation
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Example 2: Consider measuring the ellipticity of galaxies with direct optical images from the 
ground. 

Because they appear fainter (smaller disks), distant galaxies will look rounder, due to the 
seeing - the smearing or enlarging of the optical image through atmospheric turbulence. 

We are on course for deducing that round galaxies are more luminous (or v-v).  There is the 
possibility of course that this is true. It is far more likely that we have fallen into a Malmqvist 
trap and made a totally erroneous deduction.

Malmquist Bias and the Luminosity-Distance Correlation
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Let us adopt a  Schechter function with γ = 1 and l* = 10 for illustration.   

The probability of a galaxy being at distance R is proportional to R2, in flat space.   
The probability of it being of brightness l  is proportional to the Schechter function.   
The probability of of a galaxy of luminosity l  at distance R being in our sample is 

The product is what we want: the bivariate distribution prob(l,r), the probability of a  
galaxy of brightness l  and distance r being in our sample. What’s this look like?  

The Luminosity-Distance Correlation - Example 3

prob (in sample)  =  1    l  < Slim  R2 
                             =  0   otherwise  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The bivariate distribution prob(l,r), the probability of a galaxy of  
brightness l and distance r being in our sample looks unfortunately like this.  

There is a clear correlation between distance and luminosity. It is NOT real.

Left: Contour plots of the bivariate prob(l,r).  The contours are at logarithmic  
intervals; galaxies tend to bunch up against the selection line, leading to a bogus  
correlation between luminosity and distance. Right: Results of a simulation of a  
flux-limited survey of galaxies drawn from a Schechter function.

The Luminosity-Distance Correlation - Example 3
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Take the same simulation as before, but now 

attribute two luminosities to each galaxy, from  different Schechter functions.   

These might be luminosities in different colour bands, for example, and by definition  
are statistically independent.  If we construct a flux-limited survey in which a galaxy  
enters the final sample only if it falls above the flux limit in both bands, we see in   
the Fig. that a bogus but convincing correlation emerges between the two luminosities.

Results of a simulation of a flux-limited survey of galaxies, in which each  
galaxy has two statistically independent luminosities associated with it.

Luminosity-Distance: Example 4 of Forced Correlation



13

Examples 3 and 4 of Malmquist ‘Correlations’

Allan Sandages’s radio-galaxy - quasar 
correlation from the Third Cambridge  
Radio (3CR)Catalogue. Note the survey  
limit, the faint green line.

Umm - total garbage conclusion!
Note that baseballs and bricks would  
probably fit on both these lines as well
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A little paper in 1913 MNRAS by Eddington: On a formula for correcting 
statistics for the effects of a known error of observation

Eddington bias rediscovered by
 Submm Galaxy researchers

Eddington Bias
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Left: Red points show a source count (number of sources on the `sky' per interval of 2 units in flux) from a 
toy Euclidean universe. The green line is the theoretical power law of slope -5/2. The blue points represent the 
distorted source count resulting from Eddington bias assuming a Gaussian flux measurement error of σ = 5 
units. Black crosses represent the analytical calculation  N’(S)=∫N(S)p(S)dS.  

Right: plots of the integrand N(S)p(S) for apparent flux densities of 15, 20, 30 and 40 units (3σ, 4σ, 6σ, 8σ) 
given an underlying law of slope -5/2 and Gaussian errors of σ= 5 units.

3σ is hopeless; 4σ is still seriously biased

Eddington Bias: a Simulation Example
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(1) Malmquist bias => distance – luminosity correlation, with many  
insidious effects to do with correlations between unrelated  
(probably!) variables. 

(2) Eddington bias => poorly defined ‘complete’ samples, serious  
errors inferring fluxes, intrinsic luminosities  and number counts,  
and hence errors in analysis of space distribution. 

Mix these together, as all surveys do => 

Simulations are essential, even after careful thought and analysis.

Survey Biases - still not the last warning
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- assume a catalogue of objects, high reliability and well-defined limits. 

- examination of an intrinsic variable l (e.g. luminosity) requires ρ(l) .   
- measure li for all of the objects in some (large and complete) volume. 

One of the best methods to determine the space density as a function of 
luminosity (the LUMINOSITY FUNCTION) is the  1/Vmax estimator.   

 - Vmax(li) are the maximum volumes within which the ith object could lie,  
       and still be in the catalogue.   

 - Vmax  thus depends on the survey limits, distribution of the objects in space,  
      and the way in which detectability depends on distance.   

 - simplest case: a uniform distribution in space is assumed.  Given the 
    Vmax(li) , an estimate of the luminosity function is 

       
in which its value is computed in bins of luminosity, bounded by the Bj . 

The Luminosity Function and Vmax
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 - a maximum-likelihood estimator, and so has minimum variance for any  
      estimate based on its statistical model.  
  

- errors are uncorrelated from bin to bin and can easily be estimated –  
      the fractional error in each bin is ~ 1/√Nj , where Nj is the number  
      of  objects in each bin. Better error estimates - bootstrap.  
  

- note ‘bin bias’. If bins are chosen large/wide  enough, there is some error 
associated with the form of the function across the bin. I.e.if you are 
plotting the function, where do you place the abscissa in the bin?    

- NOT IN THE MIDDLE!

The Luminosity Function and Vmax
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 - determination of Vmax is the crunch; choosing the flux limit of a survey affects:  
      (1) the number of sources that are missed,  
      (2) the number of bogus ones included, and  
      (3) the extent to which faint sources are over-represented.   

 => MC simulations? Rough idea of the luminosity function enables this. 

 - with V the volume defined by the distance to the source as its radius, the 
distribution of V/Vmax is very useful in estimating the actual limit of a survey…….. 
=>  

The Luminosity Function and Vmax continued ....
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 - if the correct flux limit adopted then we expect V/Vmax to be uniformly  
     distributed between zero and one.  This can be checked by, e.g. a K-S     
     test, and such a process is a model-fitting procedure to estimate     
     survey limit. 

  
- this procedure fails horribly and spectacularly at large (z > 0.2)     cosmological 

distances where cosmic evolution dominates.  

 - in fact the derivation of cosmic evolution led Schmidt (1968) to derive    
    the technique. 

 - there’s a vast literature; ~ recent summary: Willmer 1997. 

The Luminosity Function and Vmax continued ....
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From the  previous simulation with a Schechter lum fn, a flux limit of 20 units 
gives a  sample of ~200 objects.   

Shown below: the luminosity distribution η(l) shows a strong peak at ~5 units, 
related to the characteristic luminosity l* = 10.  Bins are 0.5 dex  
wide. (Faint sources are greatly under-represented, because they are  above the  
flux limit for only small distances.)  

V/Vmax Luminosity Function - Example



22

The result of applying the Vmax method and bootstrapping to derive errors.  
The input lum fn is the solid line and the estimate from the ~200 sample via 1/Vmax  

is shown as dots and error bars.  Because Vmax is so small for the faint sources, the  
few faint sources in the sample give a large contribution to ρ(l)  although the errors  
are correspondingly large.  For simplicity the luminosity functions were 
normalized,  so giving luminosity probability distributions.

V/Vmax Luminosity Function - Example concluded


