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Surveys – LF likelihood, 
censorship and confusion 

Maarten Schmidt arrived at CalTech in 1959, where at first he continued working on the mass 
distribution and dynamics of the Galaxy. When Rudolph Minkowski retired, Schmidt took over his 
project of taking spectra of objects which had been found to be radio emitters. In 1963 he identified the 
redshift of the first quasar, 3C273,  from the redshifted Balmer lines of hydrogen. In 1968 he (and 
Rowan-Robinson independently) discovered the V/Vmax test, and showed that 3CR radio galaxies 
evolved strongly; they were not uniformly distributed in space. Past President of the AAS; many 
scientific awards.

Maarten Schmidt 
1929-
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We considered Malmquist bias, the effect by which distant objects can only be luminous 
ones in a flux-limited survey - there is a forced correlation between distance and intrinsic 
properties. 
 bias 

Observed luminosities in a flux-limited survey form the the actual distribution of luminosity, 
not a luminosity function. This luminosity distribution is heavily biased to high luminosities, 
visible in the  large volumes at the distance limits of surveys. 

Malmquist bias means that any intrinsic properties in flux-limited surveys will appear to be 
correlated – it’s widespread, insidious, and hard to remove. 

Eddington bias is the second serious problem in flux limited surveys – with noise errors and a 
steep source count, many more faint sources are pushed above the survey limit than bright 
sources depressed below the limit. The count is distorted to show a false excess of sources 
at lower flux densities.  

To find the true luminosity function, 1/Vmax method is excellent. It requires computation of 
the maximum volume in which each object can be seen above a given survey limit. However, it 
fails badly if cosmic evolution is present, ie generally if redshift > 0.2. 

In the last lecture ....
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In such cases:  

(1) work out luminosity function by 1/Vmax in shells of small Δz. 
                        

(2) assume a factorized lum fn ρ(l) = ρ(l)(z=0) . φ(z,l,…) and  adopt C- method,  
lumimnosity-distance method, or any one of 100 more. 
                        

(3) try free-form evolution, fitting all the data known on 
                             complete samples (N(z), N(S), luminosity distributions etc)  
                             with polynomial surfaces in L and z.  

There’s a particularly elegant method of doing this using a Bayesian appraoch that I describe briefly 
and in a somewhat concentrated way:

How to work out  combined lum fn + evolution?
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Marshall et al 1983 ApJ 269, 35 (X-ray sample of QSOs) 
 - 32 X-ray QSOs, two complete samples, 10 Q to B=19.20 mag in 1.72□,  
        22 to B=18.25 in 37.2□  
 - redshift limit z = 2.2; incomplete beyond this. 
 - L*= 1030 ergs s-1 hz-1 (optical) 
 - L > 0.18 L* to avoid Seyfert galaxy contamination.

Likelihood and Space Density
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Marshall et al 1983 ApJ 269, 35 
 

Likelihood and Space Density: Example
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Example: Marshall et al. 1983
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Example: Marshall et al. 1983

=>      dN/dL = ρ(L,z) = (const)  x (1+z)k x  (L/L*)-α

k

And look: we have found with merely 32 objects, a simple way of describing the strong 
evolution of X-ray QSOs as a function of their luminosity (luminosity evolution).

OK. ok there are many more than 32 dots in the picture, but the function form is correct - the more luminous show 
much more evolution - this was a simulation to look how it might work of r larger samples.

α
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We start with a primary sample of objects - a series of measurements     
       from which we pick out ‘detections’.  The results often find their way   
       into catalogues, e.g. the New General Catalogue (NGC) or the 3CR   
       Catalogue.  

‘Resurvey’ is different, e.g.  measuring Hα luminosities of NGC galaxies. 
   
      - now it is very useful to quote upper limits; real objects are there. 

      - sometimes a resurvey may yield lower limits, e.g.  measurement of 
         X-ray and radio flux densities for the NGC galaxies would yield 
         both upper limits and lower limits for the radio to X-ray spectral     
         index. 

Survival Analysis: Censored Data -1
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Statistics dealing with limits is called ‘survival analysis’, from medical statistics: 
     at end of a study some subjects have survived, some not. 

     - measurements which are only limits are called ‘censored’.  
     - introduced into astronomy by Avni, Feigelson, co-workers 1980 >.  

Survival analysis offers  
         (i) estimation of intrinsic distributions (like luminosity functions),  
        (ii) modelling and parameter estimation,  
       (iii) hypothesis testing  
and (iv) tests for correlation and statistical independence, for cases  
             in which some of the available measurements are limits.  

Survival Analysis: Censored Data -2
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The key assumption is that the censoring is random; this means that the 
chance of only an upper limit being available for some property is independent 
of the true value of that property.  

Assumption often met for flux-limited samples.  For an object of true luminosity  
L and distance R, the condition for censoring is that 

the flux limit for the survey.  If R is a random variable, independent of L, and 
Slim is fixed, then the chance of censoring is independent of L.  

Careful examination of how a sample was selected  is necessary to 
determine that survival analysis is applicable. 

Survival Analysis continued
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Careful examination of how a sample was selected  is necessary to 
determine that survival analysis is applicable. 

Let’s be definite.  

Take a survey at wavelength A; resurvey the sample at wavelength B. 

So we get a complete set of LA, some values of LB and some upper limits LU
B. 

Our aim – to construct the normalized distribution of LB , which will be 𝞪  ρB 

There are two estimators available, a recursive relation due to Avni and the 
Kaplan-Meier estimator of the cumulative distribution. Both are maximum 
likelihood. Both work for upper and lower limits. The former requires binning; the 
latter does not rely on binning, but being cumulative, errors are highly correlated  
from one point on the estimate to the next.

Survival Analysis continued continued
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Here’s the Kaplan-Meier estimator: 

Lower limits: arrange data in increasing order. 
                     di is the number of observations of Li 
                     ni is the number of observations = / > Li 
                     δi = 1 for detection, 0 for lower limit 

Upper limits: arrange data in decreasing order 
                     ni is the number of observations < / = Li 
                     δi = 1 for detection, 0 for upper limit 

Survival Analysis continued even more
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Example 1 :

Left: Avni estimator, binned data. Distribution of spectral indices (optical to X-ray) 
for a sample of optically-selected QSOs; observed distribution (red dashed), and true 
distribution after including lower limits.  

Right: same data, shown cumulatively as dots. Kaplan-Meier estimator is the solid line, 
following the bins used in the Avni formulation. 

Survival Analysis continued even more
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Example 2 : back to the simulated field-galaxy sample.  

This was selected at one wavelength.  

We ‘resurvey’ at another, and get 67 detections and  317 upper limits, in a 
simulation allocating luminosities from independent Schecter functions at both  
wavelengths. 

Left: luminosity distribution and upper limits for the field galaxy simulation; there are 67 
detections and 317 upper limits (dashed bins).  

Right: luminosity probability distribution (black dots) from the Avni estimator,  
together with bootstrap error estimates. Solid line – theoretical distribution.  
Lighter dots are a 1/Vmax   estimate, displaced slightly in luminosity for clarity.

Survival Analysis - Example 2
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Survival analysis and 1/Vmax results agree – both are MLEs and are based on 
similar models.  

The survival analysis gives better estimates here of the luminosity  
function, using more data.  

But the real advantage comes in correlation analyses, or  
reconstructions of non-distance-dependent distributions  
(e.g. spectral indices).

Survival Analysis - Example 2 concluded
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We  can test two distributions of observations against each other, using 
detections as well as limits. 

There are several choices. 

- but how were the samples selected? We will expect a problem whenever 
the variable of interest is correlated with the variable used to define the 
sample. The Malmquist bias of the defining variable will then be manifest 
in the other variable.  

- If the bias is not the same for the two samples (and it depends on the 
observational method), a bogus difference will be detected. 

Censored Data and Hypothesis Testing
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Variants of W-M-W rank tests are used: 

-  Intuitively we might expect the ranking  procedure to be applicable for data  
    containing limits, as limits should be randomly intermingled.   

-  Constructing a test statistic depends on the penalty we assign for non-     
random intermingling, and how we distribute this penalty between 
detections and limits.  

-  Feigelson et al (1985) described two variations on this idea, the Gehan and  
log-rank tests.  Asymptotic distributions are known for the statistics, but 
simulation will be more reliable for small samples.

Censored Data and Hypothesis Testing (2)
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The Gehan test is simplest and here is is, crammed onto one slide:  

(1) take two samples, labelled A and B, including both  detections and limits. 

(2) Arrange the detections in order; ascending order for data with lower limits,  
descending order for data with upper limits. 

(3) Number the observations; this gives each datum a rank.  Call the ith rank for data  
from sample A riA. 

(4) For the ith detection from sample A, calculate niA , the number of observations of A  
which are to the right.  By “right'‘ we mean data that are >/= the ith observation (in the  
case of lower limits), or </= the ith observation (in the case of upper limits).  Thus this  
part of the calculation uses the limits. The number of limits from sample A between  
detection i and detection i+1 is miA . 

(5) The Gehan statistic: 

Censored Data and Hypothesis Testing, more
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Here’s an example: We simulated two samples of objects, each drawn from the field-
galaxy Schechter function but with different characteristic luminosities: 

Sample A: 23 detections and 149 limits, L* = 10 
Sample B: 45 detections and 167 limits, L* = 30 

The estimated luminosity functions (Avni method, bootstrap errors) show an 
appreciable difference: 

The Gehan test gives Γ/σ = 3.3, significant at the 0.1~per cent level (if the asymptotic  
approximation holds for these small numbers, this far out in the wings).

Hypothesis Testing, Censored Data - Example
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In many cases of astronomical interest, we find that faint objects are much more  
numerous than bright ones.   

Faint objects crowd together; ultimately they start to be unresolved and our signal  
becomes a mixture of objects of various intensities, blended together by the point 
spread function of our instrument.   

Examples include radio sources in deep surveys,  spectral lines in the Lyman-α forest,  
stars at the cores of globular clusters, and faint galaxies observed in the optical. 

The confusion limit concept was developed during a bitter controversy amongst radio  
astronomers and cosmologists in the 1950s, the source-count/Big Bang/Steady State  
controversy. 

The root of the problem was instrumental, wildly different source counts being obtained  
at Sydney (Mills Cross; essentially filled aperture) and Cambridge (interferometer).   

Scheuer (1957) analyzed the statistics of the source counts and showed that the  
Cambridge results were seriously affected by confusion.  The wide beam of the 
interferometer meant that many radio sources were contributing to each peak 
in the record; these had erroneously been interpreted as discrete 
 sources.

The Confusion Limit
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We touched on this issue early in this lecture.  

In many cases of astronomical interest, we find that faint objects are much more  
numerous than bright ones - galaxies on the sky, etc. This is frequently described 
as ‘the number count being steep”., i.e. N(S) where S is brightness, usually 
approx a power law, has an exponent of < -2. 

Faint objects crowd together under these circumstances; ultimately they start to 
be unresolved and our signal becomes a mixture of objects of various intensities, 
blended together by the point spread functionof our instrument.   

Examples include radio sources in deep surveys, spectral lines in the Lyman-α 
forest, stars at the cores of globular clusters, and faint galaxies observed in the 
optical. 

The Confusion Limit
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The confusion limit concept was developed during a bitter controversy amongst 
radio astronomers and cosmologists in the 1950s, the  

              source-count Big Bang (evolution) versus Steady State  

controversy, main protagonists Ryle (evolution) and Hoyle (Steady State). 

The root of the problem was instrumental, wildly different source counts being 
obtained at Sydney (Mills Cross; essentially filled aperture) and Cambridge 
(interferometer).   

Scheuer (1957) analyzed the statistics of the source counts and showed that the  
Cambridge results were seriously affected by confusion.  The wide beam of the 
interferometer meant that many radio sources were contributing to each peak 
in the record; these had erroneously been interpreted as discrete sources. 

>80% of the “sources catalogues in the 2C survey were blends, not real. 

The Confusion Limit
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To show the pronounced effect of confusion, here is  a simulation of a 1D scan of  
sources obeying a Euclidean source count N(>S) α S-3/2.  The beam is a simple  
Gaussian and there is, on average, one source per beam.  

A simple count of the peaks in the record gives a maximum-likelihood slope for 
the source count of -1.8 with standard deviation 0.3, very different from the true 
(input) value of -1.5:  

Confusion simulation at a level of one source per beam area. Input sources – red verticals; 
solid line is the response when convolved with a Gaussian beam.

The Confusion Limit - Simulated Example
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As it turned out, both sides were wrong and right.  

Firstly, the large redshifts of radio sources require an initial slope much flatter 
than -3/2, a point rarely if ever acknowledged in the literature. 

Thus Mills “discovery” that the slope was close to -3/2 was hence irrelevant to the 
argument. 

Secondly the Cambridge survey technique was indeed horribly at fault; >80% of 
the sources in the 2C catalogue, the publication at primary issue, were blends, 
not real sources at all.  

Its resultant N(S) curve was twisted completely out of shape, far too steep initially.  

But because Steady State required such a shallow slope: 

Ryle was right, for all the wrong reasons. Strong cosmic evolution prevails, 
widely recognized in galaxy formation, star-formation rate, and our 
“concordance” model of the Big-Bang Universe, `originating’ in a hot dense 
phase. 

The Confusion Limit - Aside
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The technique developed by Scheuer is known to astronomers as 
“P(D)”, or “(P)robability of (D)eflection” - the deflections being of the 
pen on a chart recorder. 

The technique has been used in the radio, the X-ray, infrared, and 
Lyman-α, at least. 

The method derives the probability distribution of measurements in 
terms of the underlying source count, which itself may be recovered 
by a model-fitting process.  

Its benefits are that (a) information is obtained from sources that are 
much too faint to be”detected” as individuals, and (b) the correct form of 
the count from the faint levels of the survey is derived in an unbiased 
way. 

The Confusion Limit - the P(D) Technique
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The derivation of the distribution requires conditional probabilities, Poisson 
statistics, autocorrelation functions, Fourier transforms. It is most elegant bit of 
analysis by Scheuer. 

The result: the FT of the p(D) distribution 

contains the source count N. R is the FT of r. Analytic solutions are available  
when N(S) is a power law, but the inverse transform to get p(D) has to be done  
numerically.   

In real life we need to take account of differential measurement techniques in 
which measurements from two positions are subtracted to avoid baseline 
errors. And there’s always noise. A modelling process is needed to recover N(S).  
Vernstrom et al. (2014) have carried this out in detail, using the JVLA to to 
determine radio source counts into the nano-Jy regime.

The Confusion Limit - the P(D) Technique
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The derivation of source counts from p(D) is another technique in which population  
characteristics are derived from observations of discrete objects or features without  
forming an object list or catalogue. 

Wall & Cooke (1975) applied the p(D) technique for filled aperture telescopes to  
extend the 2.7-GHz radio source counts to much fainter levels than could be achieved  
by identifying individual sources: 

The 2.7-GHz counts from Wall & Cooke (1975): the darker line is derived from ordinary  
source counts with error bars not much wider than the line, while the p(D) results are  
shown in grey, the dashed lines representing one standard deviation of  
the fitted parameters.

Confusion Limit and P(D) - Example 2
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Chi-square testing/modelling: the  
object of the experiment was to  
estimate the surface-density count  
(the N(S) relation) of faint radio  
sources at 5 GHz, assuming a  
power-law N(>S) = KS-(γ-1),  γ and K  
to be determined from the distribution  
of background deflections, the  
p(D) method. The histogram of  
measured deflections is shown right.

The dotted red curve above represents  
the optimum model from minimizing χ2.  
Contours of χ2 in the  γ - K plane are  
shown left. 

With the best-fit model, χ2 = 4 for 7 bins, 
2 parameters; thus dof = 4. Right on.

Minimum Chi-Square method / P(D) - Example 3



29

If only Wall & Cooke (1975) of Wall et al. 1982 had known 
anything about Bayes and priors……

Confusion and P(D) - Example 3
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END


