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Sequential Data – 1D 
Ronald N Bracewell (1921 – 2007)  

- PhD  in ionospheric research, Cavendish Lab (Ratcliffe). 
- 1949 -1954 Radiophysics Laboratory of CSIRO; a founding  
   father of radio astronomy, wrote the first textbook with Pawsey. 
- aperture synthesis, radio astronomy - many fundamental papers  
    on restoration, reconstruction, interferometry (1954-1974).  
- co-discoverer of strong polarization in Cen A  (NGC5128),1962 

- the ‘Bracewell probe’ - autonomous interstellar vehicles for  
    communication with alien civilizations. 

- solar physics, especially the sunspot cycle and the solar interior, stimulated by discovery  
   in South Australia of laminated sediments with rich record of astronomical Precambrian cyclicity. 
  
- 1983 a new factorization of the discrete Fourier transform matrix :The Hartley Transform (1986); 
   also chirplets 

- Bracewell 1965, 1980, 1999 – The Fourier Transform and its applicationsASTR509 
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We looked at three aspects of surveys/detections: 

(1) How to use maximum likelihood (and Bayes if we wish) to map out space 
     distribution more accurately than good ol’ 1/Vmax. 

(2) Censored data / survival analysis – how to use data from re-surveys when 
     it’s in the form of upper or lower limits: 
     - the censoring must be random;  
     - two algorithms are available to work out the luminosity function     
           for censored variables; 
      - comparison of normalized luminosity distributions can be done for two   
           censored variables. 

(3) The confusion limit – the result of finite resolution ‘adding up’ the faint  
      sources into a continuum:  
     - crucial for surveys – cf the 2C source counts, Big Bang vs. Steady State; 
      - confusion limit can be used via P(D) analysis to obtain population 
         information below the level at which individual sources can be seen.      

Last time ....
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Many observations consist of sequential data : 

 - intensity vs position as a single-beam/pixel is scanned across the sky,  

 - signal variation along a row/column on a 2D (e.g. CCD) detector, 

 - single-slit spectra, 

 - time-measurements of intensity (or any other property like the stock  
    market). 

1D (Sequential Data) Statistics
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What do we want to do?  (and this is just the start….)  

     - establish a baseline, so that signal on this baseline can be analyzed 

     - detect signal, identification for example of a spectral line or source in the data  
      for which the noise may be comparable in magnitude to the signal 

     - filter, to improve signal-to-noise ratio 

     - quantify the noise 

     - period-search; find periodicities in the data 

     - trend-finding; can we predict the future behaviour of subsequent data? 

     - correlation of time series to find correlated signal between antenna pairs,  
     or to find spectral lines 

     - modelling; many astronomical systems give us our data convolved with some  
     instrumental function, and we want to get back to the true data. 

1D (Sequential Data) Statistics
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Distinctive aspect of analyses: the feature of interest only emerges 
after a transformation, e.g.  

(a)  filtering to find the feature, or 
(b)  transformation may be an integral part of the data, as in periodicity 

search, or spectral-line correlator.

1D Statistics - Data Transformations

Expansions will be in orthogonal functions, e.g. Fourier series. 
(Close affinity with PCA - the main features can be extracted from a jumble of data.   
What is extracted depends entirely on the basis set used. It’s art and craft.) 

 - A scan f(t) ; t is a sequential or ordering  index, e.g. time, space, wavelength.   
 - f is sampled at discrete intervals, thus f(t1), f(t2), ….   
 - The set will be described by some sort of multivariate distribution function  
 - If Gaussian, covariance matrix of the f ’s will be a sufficient description. 
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Long scans in f(t) may be represented by 

in which the basis functions are B and the expansion coefficients are F, the  
variable ω changing from continuous to discrete.  

To be useful, we need transformations which can be reversed. 
We get equations like 

with sampling at discrete values of t, and with some simple relationship   
between B and B‘.  If B is the exponential function, we have the  
Fourier transforms and series.

Data Transformations continued
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If our scan f is a random variable, then the coefficients F are random, and will 
have different values for each of the (discrete) values of ω: ω1, ω2 … 

The covariance matrix C of the coefficients describes F,  if the stats are 
Gaussian.  The components of F are then described by a multivariate 
Gaussian.  

A basis set giving a diagonal C is very efficient at capturing the variance in the  
data => data variation is compressed into the smallest  number of coefficients Fω.      
 => use in data compression, noise isolation. 

Requiring that CF be diagonal leads to the Karhunen-Loeve equation which, for 
our discrete case, is an eigenvalue problem: 

The matrix R is                             , closely related to the autocorrelation function, 
and R is just the covariance matrix of the original data components f(ti). 

Data Transformations continued continued
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With a model for the statistics of our data, we can construct R and solve the  
Karhunen-Loeve equations.  The eigenvectors B will be discretized 
basis functions, and they may be the familiar sines and cosines of 
Fourier analysis. 

Or not: for e.g. optimum data compression, we may want tailor-made 
functions. 

 => Chebyshev polynomials, wavelets…a modelling problem,  
        

We might be able to ‘Bayesiate’ from start to finish, finding basis functions 
and F, optimized and hands-off.

Data Transformations concluded
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The Fourier transform is king. Why? 

(1) Most physical processes at both macro and micro levels involve oscillation  
and frequency: orbits of galaxies, stars or planets, atomic transitions at 
particular frequencies, spatial frequencies on the sky as measured by 
correlated output from pairs of telescopes. 

We want the frequencies composing data streams; just the amplitudes of  
these frequency components may be the answer (as in the case of detection  
of a spectral line). 

(2) In many physical sciences there is frequent need to measure a single signal  
from a data series. In measuring a specific attribute of this signal such as  
redshift, the power of Fourier analysis has long been recognized 

(3) But it really comes down to one simple fact –  

          The existence of the Fast Fourier Transform (FFT). 

         (I’ll come back to it.) 

Fourier Analysis
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Solutions to many questions posed of the data lie in taking the one-
dimensional scan to pieces in a Fourier analysis:  

Any continuous function may be represented as the sum of sines and 
cosines: 

where F, representing the phased amplitudes of the sinusoidal components of 
f, is known as the Fourier Transform (FT).

Fourier Analysis
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♠ The FT of a sine is a delta function in the frequency domain – c.f. period search. 

♠ The FT of f ¤g, the cross-correlation or convolution of functions f and g, is  
      F x G - c.f. stable instrumental profile convolved with line width. 

♠ The FT of f(t +τ ) is just the transform of f times a simple exponential e-iωτ.  
      Use of this shift theorem has measured many redshifts, maybe millions. 

♠ The Wiener-Khinchine theorem states that the power spectrum |F(ω)|2 and the  
      autocorrelation function  ∫ f(τ) f(t + τ) dτ  are Fourier pairs.  The autocorrelation  
      function is very closely related to the covariance matrix and hence is a  
      fundamental statistical quantity.  Its relationship to the power spectrum is  
      the basis of every digital spectrometer. 

♠ Closely related is Parseval's theorem; this relates the variance of f and the     
      variance in the mean of f, to the power spectrum – cf cases where we have     
      correlated noise, especially the prevalent and pernicious “1/f'' noise. 

 ♠ The FT of a Gaussian is another Gaussian.  Given the prevalence  
       of Gaussians everywhere, this is a very convenient result.

Fourier Analysis - a bunch of well-known things



12

The Discrete Fourier Transform (DFT) has special features: 

 If the function sampled N times at uniform intervals Δt in the spatial (observed) frame,  
   the total length in the t-direction is L = Δt  x (N-1). 

 Result is the continuous function multiplied by the ‘comb' function, producing a 
   f'(t) which (with the interval in spatial frequency as Δν = 2 π Δt) may be represented  
   either as a sum of sines and cosines 

   or as a cosine series 

   with amplitudes A'n and phases Ф'n given by 

In the latter formulation, obtaining the DFT produces - by virtue of the 2π cyclic nature  
of sine and cosine - a ‘FT plane' for f'(t) which shows the amplitudes mirror-imaged  
about zero frequency, with a sampling in spatial frequency at intervals of 
2π / [Δt  (N - 1)] and a repetition of the pattern at intervals of 2π / Δt.

Fourier - Uniform Sampling
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There are five criteria for successful discrete-sampling: 

1. The Nyquist criterion or Nyquist limit guarantees no information at  
spatial frequencies above π/Δt. The sampling interval Δt sets the highest spatial 
frequency 2π/Δt retained; higher frequencies present in the data are lost. 

2. The Sampling theorem: any bandwidth-limited function can be specified exactly 
by regularly-sampled values provided that the sample interval does not exceed a 
critical length (approximately half the FWHM resolution), i.e. for an instrumental 
half-width B, f'(t) → f(t) if Δt  < B/2.  Any physical system is band-pass limited, 
preventing full recovery of the signal. 

3. To avoid any ambiguity - aliasing - in the reconstruction of the scan from its  
DFT, the sampling interval must be small enough for the amplitude coefficients of  
components at frequencies as high as π/Δt  to be effectively zero. Otherwise there’s 
a tangle with the negative tail of the repeating function → ambiguity. 

4. The lowest frequencies are 2π/(NΔt). Such low-frequency components may be 
real or instrumental; but to find signal the scan length must exceed the width of 
single resolved features by  > 10. 

5. The integration time per sample must be long enough for decent s/n.

Fourier - Uniform Sampling continued
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For data assessment or model-fitting in the Fourier domain, we need to 
know the probability distribution of the Fourier components and their 
derived properties. 

For the comparatively simple case where the “data'' f are pure Gaussian noise, 
of known covariance Cf , there are analytical results for the Fourier 
components, for the power spectrum and the auto- and cross-correlation 
functions.  

There is a discussion of this case in W&J pp237-241. No systematic signal was  
present in these model data. And note that in real life the input distribution 
functions are unlikely to be Gaussian. 

Fourier Transforms - Statistical Properties
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Thus for reliable error estimation – detailed Monte Carlo simulation, 
building in the mess of real observation, is essential. 

The analytic results of the W&J pages provide some guidance: 

 -  power spectra will have problems of consistency and bias 
 - correlation functions will contain highly correlated errors 
 - detail will have to be sacrificed in estimating response functions. 

The take-home point - we need a reasonable idea of basic statistical 
properties – power spectrum or correlation function – to make progress in 
understanding our data when it is in the form of scans.

Fourier Transforms - Statistical Properties, more
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FFT – Cooley and Tukey 1965 

Does the transform of N points in a time proportional to N log N, rather than  
the N2 timing of a brute-force implementation. This is a monumental cpu saver. 

Quirky (see Bracewell, or Numerical Recipes) 
  - typical (?) arrangement of input / output data 
  - normalization   

Critical to most image processing; certainly to the design of radio telescopes 

Algorithm was apparently known to Gauss – even before Fourier had  
discovered his series. It may be the most used algorithm on the planet. (Think 
about every .jpg image for a start.) 

The Fast Fourier Transform - the FFT
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Tonry and Davis 1979

Galaxy spectrum g(n) with n = A lnλ +B, n is bin number. 

Template spectrum t(n), zero redshift, instrumentally-broadened. 

Set up DFTs G(k) = Σn g(n) exp(-2πink/N) , and equiv for T(k) 

Then FT for cross-correlation c(n) = g ¤ t(n) is C(k) = (1/Nσgσt) G(k) T*(k) 

Now set             g(n) = α t(n) ¤ b (n – δ)  

i.e. the galaxy spectrum is a multiple of the template spectrum convolved with  
a broadening function shifted by δ. This function accounts for the velocity  
dispersion and the redshift, and we urgently seek its parameters. 

Assume b(n) Gaussian, and likewise for c(n) , centered at δ 

Minimizing Χ2(α, δ; b) = Σn [α t ¤ b (n - δ)  - g(n) ]2 

is equivalent to maximizing               (1/σt x b )c ¤ b(δ) 

Example - Redshifts from Cross-Correlation
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Example - Redshifts from Cross-Correlation


