
Sequential Data – 1D, cont. 
Joseph Fourier 1768 - 1830

Three-way conflict – priesthood/math/politics

Jailed in 1794 for speaking out against the terror. Freed 1794.
Ecole Normale – tutors Lagrange and Laplace

1797 – chair Ecole Polytechnique, post-Lagrange

1798 – joined Napoleon’s army, invaded Egypt – 
Battle of the Nile – oops; stayed in Egypt until 1801, 
archaelogy, founded the Cairo Institute

1801- Napoleon patronage: Prefect of Grenoble, overseeing 
operations to drain the swamps of Bourgogne (Burgundy) 
and to construct a new highway from Grenoble to Turin. 

1804-1807 finally: theory of heat, done with series expansion + controversy:
“The first objection, made by Lagrange and Laplace in 1808, was to Fourier's 
expansions of functions as trigonometrical series …”
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1. We considered why we should wish to Fourier 1D data – a scan: baseline assessment, noise 
       property assessment, signal detection, filtering/signal search,  period search, cross- 
       or self-correlation for power spectrum.

2. We want to carry out data transformations with orthogonal basis functions that must be up 
       to reverse transformation and discrete sampling.  Basis sets which give a diagonal C 
       compress data and isolate noise with max  efficiency óthe Karhunen-Loeve equation from 
       which  Eigenvectors lead to basis functions – maybe the trig functions of Fourier? Or not. 

3. Fourier is the basis king  – cf the FFT, oscillation, rotation, orbits,  atomic spectra, 
        period-finding…Many useful properties: autocorrelationópower spectrum, 
      Gaussian ó Gaussian, shift theorem, sine ó delta function, etc.

4. Discrete Fourier Transform (DFT) – convolution of fn with comb fn for uniform sampling; 
        5 aspects for success – Nyquist limit (π/Δt), sampling theorem limit, aliasing, 
     scan-length, s/n.

5. Statistical properties, worked out for Gaussian, no signal case, indicate difficulties 
        with consistency and bias for power spectra, correlation errors in correlation functions, 
        and the need to sacrifice detail in estimating response functions.

In review of #17 ....
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If noise is shot noise or photon noise, it is ‘white' - and its spectrum extends 
flat to the limit given by the sampling theorem. 

Recall that the FT of a Gaussian is another Gaussian - so that if instrumental  
response or line-shape is ~Gaussian, there should be little high-frequency 
information.

=> tapering off the amplitudes of high frequencies is a winning strategy. 

It is simple to manipulate the transform of the data to cut out the higher 
frequencies. 

Whatever we do by chopping out or reducing the amplitudes at 
high frequencies is bound to decrease the noise - but it must decrease some 
signal as well, particularly on small scales in the spatial domain. 

Filtering - to Reduce Noise, Compress Data
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Square filters produce ringing in the signal, so that a tapering to high 
frequencies is desirable.  There are books full of techniques. A general
approach: it is readily shown both by minimizing the variances and by 
conditional probabilities that an estimate of the optimum filter is given by

           where S is the signal and N the noise.

This is Wiener filtering. It requires us to assess or model the FT of both noise 
and signal. This is difficult of course if signal and noise have such similar 
power spectra - but then, no filter can cope under these 
circumstances.

Filtering - to Reduce Noise, Compress Data, cont.
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The raw data of A is a Gaussian sitting on a flat baseline, with random Gaussian noise added. The 
DFT in B shows the signal and noise components, modelled by the  Gaussian and horizontal curves 
respectively. The Wiener filter, applied in the frequency domain, produces the DFT of C, and the 
reverse transform produces the greatly improved s/n of D.

The procedure is robust; approximate the signal transform with a triangle and the noise 
with a straight line to get very similar results.

Causal filters (e.g. Kalman) use only ‘past’ data. 
Savitsky-Golay filters: low-order polys fitted to a sliding window;  see NumRec.

Low-Pass Filtering - Weiner Filtering Example
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High-pass filtering is getting rid of unwanted low frequencies; and this is known in 
the trade as fitting baselines, or baseline assessment. 

Heavy smoothing? polynomial fits? spline fits? 

The signal is the problem. Note that the transform of a Gaussian is a Gaussian! 
They are big at low frequencies.

Minimum-component filtering (Wall 1997): 

  (1) identify regions of clear or possible signal.
  (2) patch these to form a segmented baseline array.
  (3) end-match with e.g. a linear fit.
  (4) form the DFT of the resultant ‘baseline array’.
  (5) remove the high frequencies from this with savage multiplicative filter in the     
        FT plane to get rid of any semblance of noise.
  (6) reverse-transform to get the real baseline.
  (7) restore the gradient removed at (3).

High-Pass Filtering:  Minimum-Component Baselines
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Error assessment can be carried out with MC analysis. It shows:

 - patch width is critical; patches should not extend beyond ± 2σs  for 
weak signals, further for strong signals.

 - even the weakest signals must be patched to get unbiased 
measurements.

 - heavily curved baselines rapidly escalate the errors in signal 
      strength measurement.

Minimum-Component Baselines, cont.
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(Above) A spectrum of 3C47 
obtained with the Faint Object 
Spectrograph of the William 
Herschel Telescope, La Palma. The 
redshift is 0.345; broad lines of 
the hydrogen Balmer series can be 
seen, together with narrow lines of 
[OIII]. 

(Below) A spectrum of the A star 
RZ Cas (Maxted et al. 1994).
The continuum obtained with the 
minimum-component technique is
shown as the black line superposed 
on the original data.
    

Minimum-Component Baselines: Example
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Functions f and g: the coherence function is estimated by

with estimation done by either smoothing the power spectrum, or averaging several 
power spectra derived from separate scans. The coherence function is the correlation 
coefficient between f and g in frequency space.

The coherence is extremely useful in cases where we have an input f and and output g 
and we want to find out out more about the “black box” that changes f into g. 
 -  purely linear? then g = f ¤ h for some h, and the coherence function γ= 1.  
 -  more likely, noise, so g = f ¤ h  + ε
 -  depending on the frequency content of the noise and the input, we will have structure 
    to γ, which will generally be less than one.  
 -  other interesting reasons for γ < 1 will be that the causal relationship between f and g 
    is non-linear, or extra causal factors are in play. The coherence will be lower.

The Coherence Function
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The Coherence Function - Black-Box Example

EXAMPLE: We have a relationship for some synthetic data

in which f is white Gaussian noise, h is a Gaussian filter, ε is noise added at the output 
side of the box, and b is an unrelated low-frequency effect (obtained in the following 
case by vigorous recursive filtering of Gaussian white noise).



a) the input data f,  

b) the input convolved, with some 
noise added f ¤ h + ε,  

c) the extraneous effect b(t), 

d) the coherence between  f and g. 

- loss of coherence at low 
frequencies (because of the extra effect) 

- loss at high frequencies (due to 
noise + smoothing by instrumental response.  

- intermediate frequencies - a linear system,
where only the input f affects the output g.

 - can model our box as 
a simple convolution of input data with 
an instrumental function; we also suspect that there must be an extra causal effect  
at low frequencies. This analysis yields the clean part of the spectrum.

Coherence Function - BB Example cont.

a

b

c

d
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END


