
Sequential Data – 1D, cont. 2 
F N (Florence Nightingale) David (1909 - 1993)

Research Assistant with Karl Pearson 1931 

Attended Fisher lectures 1932 

1938 PhD in Statistics, UC London 

1939-1945 Ministry of Home Security: statistical models  
to predict consequences of bombing in central London. 
Vital during the 1940-41 blitz; services kept running; and 
she updated the priors! 

1962 Professorship, UCL 

1969 Head of Dept of Statistics Univ Calif Riverside 

1992 Elizabeth Scott award for “opening the door to women in statistics” 

Famed and acclaimed as a wonderful teacher, researcher, outreacher, great generosity, 
charm, terrifyingly short fuse, ever-present cigars. 
 

ASTR509 - 19

ASTR509                   © Jasper Wall               Fall term 2013



2

Using 1D filtering: 

   Low-pass filtering (example: to cut noise and improve s/n) 

   High-pass filtering (example: “baseline assessment”) 

The correlation function: 
  
   What it is 

   Using it to assess the “useful” portion of the spectrum in the  
      output of a physical system 

What was #18 all about?
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At radio frequencies, frequency resolution is achieved with a correlator. 

We have stream of sampled data from a receiver, ft1, ft2, …   

1. Correlator takes short chunks of these data and forms the autocorrelation   
    function (a fast operation in hardware).   

2. Separate estimates of the correlation function are averaged, and 

3. Fourier transformed to obtain (via the Wiener-Khinchine theorem) the  
    power spectrum of the data. 

The digital correlator
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The Digital Correlator, continued

Physically, our stream of data will consist of many wave packets, each corresponding  
to emission from a single atom or molecule.  Thus the time series of, say, electric 
field amplitudes will be 

where Фi are the random phases of each wave packet w.  The average power  
spectrum will be 

The exponential term, being an average of positive quantities, will converge to some  
positive value as more and more chunks of data are averaged  - even though the  
phases are random. By contrast, the average Fourier transform will contain the term 

                                                       .... which will converge to zero.



5

The Digital Correlator - wrap-up

Key feature of the digital correlator - quantization  

Little sensitivity is lost by digitizing at the one-bit level, f is positive or negative.  

This speeds up data-rates and reduces operations. 

Higher resolution is possible, this dependent on the number of channels in the shift-
and-add of the correlator, rather than the sampling speed of the data (as long as this is 
high enough to exceed the Nyquist criterion). 

Given the correlation coefficient ρ between the data values fti and ftj, the quantized  
correlation coefficient ρq can be calculated by marginalization.  The result is  
the van Vleck equation:
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Top left: part of the input data stream for the correlator, consisting of 64 wave packets, 
randomly located, with on average one per 128 units of time.  

Top right: the derived power spectrum from forming the autocorrelation function over 128 
time units.   

Bottom left: the average Fourier transform of 1-bit quantized data, again averaged in 128-
long chunks.  

Bottom right: the power spectrum derived from the quantized data with the  
same averaging. Almost the same!

The Digital Correlator - Example
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E.g. the search for periodicities in light curves of objects of variable luminosity.  

 -  uneven sampling from: daytime, bad weather, or bad time-assignment cttees. 

 -  most modern analysis is based on the Lomb-Scargle method (see Num Rec). 

 -  key features: (1)  method weights the data on a ‘per point' basis rather than on a  
                                ‘per time interval' basis as does the FFT;  

                          (2)  null hypothesis can be tested rigorously.  

 - If peak at frequency ω, probability that height of peak Y(ω) lies between Y (>0) and 
     Y + dY is exp(-Y)dY. If n independent frequencies are considered, then the  
     probability that none gives a value >Y is (1 - e-Y )n. Thus 

      
     represents the significance level of any peak Y(ω).  
 

Unevenly-Sampled Data - The Periodogram
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The Periodogram continued ....

BUT: 

- What is n - how many independent frequencies have we looked at?  

 - In the limit of interest, when significance levels are << 1,  P(>Y) = ne-Y,  
     scaling linearly with the estimate of n, so n need not be estimated precisely. 

 - MC experiments: if N is the number of scattered but approximately evenly-spaced  
     data points which oversample the range up to the Nyquist frequency, then n ~ N,       
     and there is little difference for n between random spacing and equal spacing.  

 - When a larger frequency range is sampled, n increases proportionally.
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Left - randomly-spaced data generated by a sine-wave of amplitude 0.5 and period 0.6 with 
noise of unit variance superposed.   

Right - same rate  of data but with gaps ~ night-to-night sampling of optical astronomy. e.g.. 

For the continuous data, even with the sine wave shown as a guide, the eye cannot pick out  
the periodicity. For gapped data, note reduced significance of the peak   
and serious aliasing resulting from windowing the data.

The Periodogram - Example, Lomb-Scargle
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Can we sample frequencies beyond the Nyquist? 
  
     - Recall that the Nyquist frequency refers to equally spaced data; with sampling  
          interval Δt, it is 2π/Δt.  

     - With randomly-spaced data evenly distributed through the sampling series, an  
          equivalent  (but non-physical) Nyquist frequency can be obtained from the  
          mean time-interval.  

     - The fundamental limitation of equally-spaced data is avoided by 
          unequally-spaced data! It is possible to sample well above the equivalent  
          Nyquist frequency without significant aliasing.  

     - cf 2D, 3D - clustering on scales much smaller than the mean separation  
           between objects can be determined if the objects are randomly sampled. 

The Periodogram - Frequencies Beyond Nyquist?
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The Periodogram - Serious `Clumping’

What really happens with serious clumping, e.g. observations all stuffed into  
        a few night-time hours? 
  
      - MC again: generate synthetic data sets of Gaussian noise by holding fixed the  
           number of data points and their sampled locations, find the  
           largest values of Y(ω), and find the best fit of the distribution to determine n.  

      - Gappy data: aliasing becomes serious. With data of even poorer quality than that 
           shown (no problem for astronomers), choosing the right peak is the issue. 

      - Folding techniques: observing a similar data stream some time later  
           will enable a choice to be made. Only one of the frequencies will have the 
           right phase to fit. The pulsar people are experts at this.
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Fourier analysis (1) loses information about where in a scan things may be 
happening, and (2) can wipe some low-frequency information. 

E.g. our low-pass filtering example: 

Bad no. (3): The noise level might be different in  
     the spectral line, but a Fourier filter applies  
     the same  degree of smoothing everywhere.   

 - These are results of the basis functions, the sin’s and cos’s being infinite in extent. 

 - They are the  cause of many of the difficulties associated with transforms of finite-    
        length data streams. 

We would like a transform which picks out details of frequency content and preserves  
information about where in the scan those particular frequencies are prominent. 

Wavelets - Why Isn’t Fourier All We Need?
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So What Are Wavelets?
A wavelet is a short function such that, being convolved with the data, it gives some  
frequency (or scale) information at a particular location in the scan.   

 Placing  the wavelets at different places in the scan  = “translating'' + 
 changing widths  = “scaling''  =>  frequency decomposition with location information.   

Mathematical restrictions on what kind of function can be a wavelet. 

EXAMPLES of wavelets in current use 

Top left, asymmetrical  

Top right, Mexican Hat 

Bottom left, Daubechies (a fractal)  

Bottom right, Haar 

Wavelet decomposition will be in terms  of  scaled and  
translated versions of each of these. 
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Different wavelets are to be sensitive to different aspects 

 - asymmetrical wavelet will be sensitive to  local gradients 

 - Mexican hat will be good at picking out oscillations 

Very effective filtering and data compression.  

 - FBI uses a wavelet-based technique for the digitization and compression of their 
     fingerprint database. 

 - In astronomy, we have scans with important  properties changing from  
     place to place, e.g. noisy regions in a spectrum, or when a  light curve shows  
     sudden change in behaviour such as quasi-periodicity. 

 - Wavelets offer new possibilities in data assessment, and a whole new armoury of  
     filtering techniques, especially those where the filtering may be different in  
     different parts of a scan.

Wavelets continued
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       Top left, original spectrum.  
       Top right, the filtered spectrum.  
       Below, wavelet coefficients as a function of location and scale. 

Dropping the three finest scales of wavelet coefficients  
is a suitable simple filter.  The result : noise is much 
reduced without loss of resolution in the spectral line.

Wavelets - Example Using Haar Wavelets
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1/f noise has a power spectrum inversely proportional to the Fourier 
variable – frequency, if we are dealing with a time series. 

Sometimes called flicker noise, it is a particular case of “pink” noise, in which 
low frequencies dominate.   

More extreme example - Brownian or random-walk noise : successive values 
of the noise are obtained by adding a random number to the previous value. 
Arises when we integrate a scan. 

1/f occurs everywhere (Beethoven symphonies or rock music or traffic flow….); 
this is hard to understand.   

Its presence (or the presence of one of its near relatives) is usually why 
averaging large amounts of data does not produce the improvement 
expected.

Detection Difficulties - 1/f Noise
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1/f Noise continued

1/f noise is the curse of the experimenter's life    

 

 - it is why filtering theory, looking so good in simulations, fails to live up to promise;  

  - why 2σ results are not results, even though the probability is >95% 

  - why increased integration time fails to improve s/n according to 1/√N which 
     we naively expect from averaging N samples. 
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The variance on a scan is the integral of its power spectrum. 
   
For finite length, variance ∝ the integral of power spectrum between Nyquist   
frequency and the first frequency above zero (1/L if L is the scan length).  

So variance of sampled 1/f noise will be 

                                                         

Left: flicker (1/f) noise of unit variance      Right: a random walk of unit variance 

So it grows logarithmically with scan length!  1/f noise has infinite variance! 

The noise is highly correlated from one sample to the next. Averaging? Useless? 

Averaging does not work at all for a noise spectrum of 1/f or steeper.

1/f Noise continued
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Variance on a mean derived from a scan f of length L, is 
                                   
Thus for white noise, we have |F(0)|2 = σ2,  and the expected 1/√L behaviour 
follows. 

But 1/f noise? Best idea of power spectrum at zero is its value at a frequency 
1/L.  Now we can see that the variance on the mean is independent of L! 

Usually we will have white noise dominating the power spectrum for 
frequencies greater than some value ω0, i.e. for scans shorter than 1/ω0.  

As scans lengthen, we uncover the 1/f noise below ω0,, that’s right, down 
where our signal is. 

General model for the variance on the mean level of a scan of length L will be 

where a and b describe the levels in white noise and 1/f noise.  

Note the analogy to low-pass and high-pass filtering: dealing with the slowly-
varying component may be considered as a baseline issue. 

1/f Noise concluded
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END
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Consider small numbers of events, times of arrival of pulses (pulsars) or  
photons (gamma-ray astronomy). Do these times  betray a period?   
The Rayleigh test is a classical test :   

(1) Have a period P in mind.   
(2) Call the times of arrival t1, t2, …   
(3) Assign a phase to each time by the algorithm 
(4) Form the statistic 

and for n > 10, 2R2/n is distributed as Χ2 with two degrees of freedom. If R is large,  
it is unlikely that the phases are random - we have guessed the correct period, so we  
would then infer that the  period is indeed P. 

We may also wish to determine P, which we would do simply by searching for a  
value of P that maximizes R.  Having determined a parameter from the data, we  
lose one degree of freedom from Χ2 in the significance test. 

Details of this and more elaborate tests are in De Jager, Swanepol & Raubenheimer  
(1989)

Times of Arrival - the Rayleigh Test


