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Science is decision - we must work out how to decide

Decision is by comparing – with a ‘clean’ sample or a hypothesis

Statistics are properties of the data, nothing else

Astronomers start from problem areas – we must use best practice

We must be familiar with  (a) non-parametric statistics
                                          (b) different measurement scales  

Science is done in a  process which can be defined, and each stage requires 
statistical familiarity

We need stats because of decision, self-defense …..

Concepts of  probability and probability distributions will be heavily involved

Bayesian methodology is powerful and essential in many cases
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…...that you need is  mostly in 

Numerical Recipes…The Art of Scientific Computing
Press, Teukolsky, Vetterling, Flannery
Cambridge University Press 2007 

If you are a serious physical scientist, you should think about buying 
this book.

Consider also

Data Analysis....A Bayesian Tutorial 2nd ed., D. S. Sivia, CUP 2006

Bayesian Logical Data Analysis for the Physical Sciences, Phil Gregory (UBC), 
CUP 2005

Modern Statistical Methods for Astronomy...with R Applications, Eric Feigelson and 
Jogesh Babu, CUP 2012
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(1) Astronomical measurements are subject to random measurement 
error and we need to have a common language of expression. If we 
quote an error, what is the unspoken assumption about it?

(2) The inability to do experiments on our subject matter leads us 
to draw conclusions by contrasting properties of controlled
samples. They are usually ‘too small’, leading to ‘statistical error’.

Example: `the distributions of luminosity in X-ray-selected Type I 
and Type II objects differ at the 95 per cent level of significance.'  

Very often the strength of this conclusion is: 
 - dominated by the number of objects in the sample
 - unaffected by observational error.

So: probability + conditionality + independence + Bayes’ Theorem +
prior + posterior probabilities.

=> probability distributions
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From games of chance involving cards or dice: probabilities are often
considered as a kind of limiting case of a frequency…….
`Obviously’ probabilities of certain events are 

number of favourable events / total number of events

Example: throwing a six with one roll of the dice (die) is ‘obviously’ 1/6.

Laplace - the “Principle of Indifference” (PoI):  
Assign equal probabilities to events unless we have any information 
distinguishing them. 

Example: probability of one spot = x, two spots =x, etc
With convention that probability of a certain event  ≡ 1.0, 6x = 1

But we cannot define probability by this kind of ratio. We have had to 
assume that each face of the die is equally probable – thus the definition 
of probability becomes circular.
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Sometimes we estimate probabilities from data. 

Example: The probability of our precious observing run being 
clouded out is estimated by :

number of cloudy nights last year / 365

but two issues:  
1. limited data – ten years' worth of data would give a different, 

more accurate result? Do we know this? 
2. identifying `equally likely’ cases e.g more likely to be cloudy 

in winter? So what is winter then? A set of nights equally 
likely to be very cloudy?

It is common to define probabilities as empirical statements about frequencies, 
in the limit of large numbers of cases.

This definition must be circular because selecting the data depends on knowing 
which cases are equally likely.  

This ‘frequentist’ approach is sometimes the only way; but the risks must be
recognized.
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Probability is a numerical formalization of our degree or
intensity of belief.  

Example: in throwing dice, x measures the strength of our 
belief that any face will turn up.

One person's degree of belief is another person's certainty, 
depending on what is known. 

If our probabilities turn out to be wrong, the deficiency is in 
what we know, not in the definition.  

But two people with the same information must arrive at the 
same probabilities. This constraint, properly expressed, is 
enough to develop a theory of probability mathematically 
identical to the one often interpreted in frequentist terms.
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Formalizing ‘measure of belief’ => deduction of a useful set of properties of 
probability.

If $A$, $B$ and $C$ are three events and we wish to have some measure of 
how strongly we think each is likely to happen, then for consistent reasoning 
we should at least apply the rule (Cox 1946): 
If A is more likely than B, and B is more likely than C, then A is more 
likely than C.  

This is sufficient to put constraints on the probability function which are 
identical to the Kolmogorov axioms of probability:

►Any random event A has a probability prob(A) between 0 and 1.
► The sure event has prob(A)=1.
► If A and B are exclusive, then prob(A or B) = prob(A) + prob(B).

The Kolmogorov axioms are a sufficient foundation for the entire
development of mathematical probability theory, the apparatus for 
manipulating probabilities once we have assigned them.
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< 1987, 4 naked-eye supernovae had been recorded in 10 centuries. 
What, before 1987, was the probability of a bright supernova happening
in the 20th century?

There are three possible answers.

(1) Probability is  meaningless in this context. This is physics, deterministic, and 
timing can be calculated. They are not random events.

(2) Frequentist point of view: best estimate of the probability is  4/10, although 
it is obviously not very well determined. (Assumes equally likely to be reported 
throughout ten centuries - some degree of belief about detection efficiency will 
have to be made explicit in this kind of probability assignment.)

(3) We could try an a priori assignment.  We might know 
    - the stellar mass function, 
    - the fate and lifetime as a function of mass, 
    - the stellar birth rate, and
    - detection efficiency. 
From this we could calculate the mean number of supernovae expected in 1987, and 
we would put some error bars around this number to reflect unknowns……
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…….The belief-measure structure is more complicated in this detailed 
model.  The model deals in populations, not individual stars, and assumes 
that certain groups of stars can be identified which are equally likely to 
explode at a certain time.

Suppose now that we sight supernova 1987A.  Is the probability of 
there being a supernova later in the 20th century affected by this 
event?

(1) would say No -- one supernovae does not affect another.  
(2)  in which the probability reflects what we know, would revise the 

probability upward to 5/10.  
(3)  might need to adjust some aspects of its models in the light of fresh 

data; predicted probabilities would change.

Probabilities reflect what we know -- they are not things with 
an existence all of their own. Even if we could define 
`random events‘ (Approach 1), we should not regard the 
probabilities as being properties of supernovae.
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Two events A and B are said to be  independent if the probability of one is 
unaffected by (what we may know about) the other. From the Kolmogorov 
axioms

Sometimes independence does not hold, so that we would also like to know 
the conditional probability: the probability of A, given that we know B. 
The definition is:

If A and B are independent, knowing that B has happened should not affect 
our beliefs about the probability of A.  Hence prob(A/B) =prob(A) and the 
definition reduces to prob(A and B)=prob(A)prob(B) again.

If there are several possibilities for event B (label them B1, B2 ….) then we 
have that

A might be a cosmological parameter of interest, while the Bs are not of 
interest.  Knowing the probabilities prob(Bi) we get rid of these nuisance 
parameters by a summation (or integration); this is called marginalization.
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1. Two QSOs of different redshift are beside each other on the sky. Remarkable!
Calculate probability: it is conditional on having noticed this at the start. 
Thus prob(A/A) = 1, consistent with our measure of belief in something we know.

2. Now calculate probability of finding a galaxy and a QSO within r of each other.
We search the solid angle Ω and have already found ςG and ςQ.. We need:

Assumes probabilities are independent – and this is what we want to test. 
Without resorting to models:

So we get

…..symmetrical in QSO and galaxy surface densities – we could search first for 
a galaxy or for a QSO. Note strong dependence on search area – specify this 
before the experiment!
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The event A (the data), follow B
Prob(A) is the normalizing factor
Prob(B) is the prior probability, to be modified by experience (namely the data A)
Prob(A|B) is the likelihood
Prob(B|A) is the posterior probability, the answer, the subsequent state of belief

An innocent mathematical identity – but its interpretation or application has 
momentous consequences for analysis of data, experimentation.

Notice also the affinity with maximum likelihood analysis - we’ll come to this later.
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Example: the famous and classical urn calculation, M white balls, N red balls.
What’s the probability of drawing 3 red and 2 white out of the M+N?
This is a counting problem, PoI, etc, and we can count.

But this is not what we want to know! This is the wrong sum!

We do not want to know the probability of drawing a certain number of each
colour.

What we want is the inverse probability calculation: we have data,
ie we have a certain number drawn, say 2 white, 3 red – and we want to infer
the population properties of the urn.

This is generally true in astronomy: we want to solve the inverse problem -
we have a small sample and we wish to infer details about the population
from which it was drawn.
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Example: N red, M white in an urn, total N+M=10.

If I make 5 draws (T=5) and get 3 red and 2 white, how many reds are in the urn?

So: from Bayes

prob(contents of urn | data) ∝ prob(data|contents of urn) 
x prob(contents of urn)

We can deal with the terms on the RHS. We take as a model for the probability
of red =   N/[N+M],  assuming no funny business.
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                                        ♪
The likelihood term =

This is just the binomial distribution, which we meet next week – the old question
of n successes out of N trials, given a fixed success rate of ρ.

What about the prior? Let’s take it as uniformly likely between 0 and N+M.

So we can calculate the (un-normalized) posterior probability:

Here’s the results for our original 5 tries (3 reds) and 50 tries (30 reds).

Binomial coefficient
 ♪
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Unsurprising? Common sense? Maybe….but consider….

1. We now can describe our state of belief about the contents of the urn in physical
or mathematical terms. 

We believe on the basis of data that there are 6 reds, but – in the case of the 5 tries, 
there could be as few as 2 and as many as 10. 

The probability of the urn containing 3 reds or less is 11 per cent, etc.

2. We have answered our scientific question: we have made an inference about the 
contents on the basis of data.

Bayes’ theorem allows us to make inferences from the data, rather than 
compute the data we would get if we happened to know all relevant 
information.
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Again: 

Bayes’ theorem allows us to make inferences from the data, rather than 
compute the data we would get if we happened to know all relevant 
information.

Example: data from two populations – different means? Most books show you how to 
calculate the data you’d get if you have populations with different means. That’s not 
what we asked! 

We want to know, given the data, what is the probability/belief state of our 
model.

3. Note use of prior information – we assigned probabilities to N to reflect what
we know. ‘Prior’ suggests ‘before’ but means ‘what we know apart from the data’.
In the current example we used a uniform prior – and got a not unexpected result.

Priors can change anticipated results in violent and dramatic ways.
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Example: Sometimes for a prior we even need a probability of a probability:

Supernova rate per century: call this ρ.  

Our data are 4 supernova in 10 centuries. 

Our prior on ρ is uniform between 0 and 1; we know nothing.

A suitable model for prob(data|ρ) is the binomial distribution again, because in
any century we either get a supernova or we do not. 

The posterior probability is then
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Following Bayes and Laplace, take the prior uniform in the range 0 to 1. Then,
to normalize the posterior probability properly, set 

resulting in the normalizing constant

                                                       which is

 
with B the (tabulated) beta function. 

Our distribution (n=4, m=10) peaks - unsurprisingly - at 4/10, as shown.
. 
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In general, for n supernova in m centuries, the distribution is

As sample size increases => narrower distribution, better definition of peak
posterior probability.

‘The law of large numbers’  - a converging estimate.
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Key step – ascribing a probability distribution to ρ, in itself a probability.
               - makes no sense in frequentist approach.
               - makes no sense in any interpretation of probabilities as objective.

Assignment of a prior probability is generally much more difficult than this!
It is the assignment of priors that really stokes the heat of debate between 
Bayesians and Frequentists.

Jeffreys, Jaynes discuss the uniform prior on ρ as being far too agnostic.
They reach other possibilities :

                                     or                                           the `Haldane’ prior

Some obvious priors like  uniform -∞ to +∞ are not normalizable!

A common prior for a scale factor σ is uniform in log σ (Jeffrey’s prior)

The Maximum entropy principle provides one way of determining a prior. 
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Example: Finally, the few supernovae can illustrate the use of Bayes' 
Theorem as a method of induction. 

Assume we establish our posterior distribution at the end of the 19th century, 
so that it is 

as shown earlier.  At this stage, our data are 4 supernovae in 10 centuries.
At the end of the 20th century, we take this as our prior. 
  
Available new data consist of one supernova, so that the likelihood is simply the 
probability of observing exactly one event of probability ρ, namely ρ.  The
updated posterior distribution is

which peaks at ρ =5/11 as we might expect.

... to illustrate how ‘prior’ = knowledge
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(1) The peak of the posterior probability distribution is one way amongst many of
 characterizing the distribution by a single number.

(2) The posterior mean is another choice, defined by

If we have had N successes and M failures, the posterior mean is given by a 
famous result called Laplace's Rule of Succession:

Example: For our SNs, at the end of the 19th century Laplace's rule would give 
5/12 as an estimate of the probability of a supernova during the 20th century. 
This differs from the 4/10 derived from the peak of the posterior probability.
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Unless posterior distributions are very narrow, attempting to characterize them by 
a single number is misleading. 

(3) A central measure plus a width is of course better, but such distributions are often 
asymmetrical with a long tail (or two).

It all depends as ever on what is to be done with the answer, 
which in turn depends on having a carefully-posed question 

in the first place.


