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Statistics and Expectations
“There are three kinds of lies: lies, damned lies, and statistics.” 

Benjamin Disraeli (1804-81) 
attrib (erroneously?) by Mark Twain 

(who was really Samuel Clemens anyway)

http://en.wikipedia.org/wiki/Image:1st_Earl_of_Beaconsfield.jpg
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- generating random numbers 
!

- pitfalls emphasized – do what you’re told! 
!

- random numbers from a frequency distribution: transform method 
!

- random numbers from a frequency distribution: rejection method 
!

- Monte Carlo integration introduced in its most basic form - as a  
  prelude to how to do it right 
!
- Sorting, indexing, ranking, etc.
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 - enormously developed for the Gaussian distribution in particular.   
 - classical territory : 
      statistics were developed because the Bayesian approach fell out of favour 
 - direct probabilistic inferences were superseded by the indirect,  
      going through statistics and intimately linked to hypothesis-testing. 
 - these alternatives to Bayes methods are subtle and not very obvious. 
 - here I avoid the math, presenting results and showing the use of statistics. 
 - I concentrate on conceptual foundations. 
!
Statistics are designed to summarize, reduce or describe data.  
!
The formal definition of a statistic is that it is some function of the data alone.   
For a set of data X1,X2 ….. , some examples of statistics might be the average,  
the maximum value, or the average of the cosines.   
!
Statistics are combinations of finite amounts of data.
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The summarizing aspect of statistics – e.g. (a) location and (b) spread or scatter. 
!
(a) Location: various combinations – 
!
!
!
!
!
!

!
(b) Spread: likewise -
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 We think we are familiar ground; we think we ‘know’ what “D = 8.3 +/- 0.1 Mpc” means.  
!
!
!
 - we assume  a Gaussian distribution, with faith in the Central Limit theorem.   
 - then ‘knowing’ the distribution of the errors allows probabilistic statements. 
!
!
!
 => one key aspect of statistics: they are associated with distributions!   
!
 => most useful when they are estimators of the parameters of distributions:  
!
      8.3 is an estimate of the parameter µ of some Gaussian 
!
      0.1 is an estimate of σ. 
!
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!
!
 => 2nd key aspect of statistics: interpretation is in a classical, not Bayesian  
      framework.   
!
!
 => Serious difference!  
!
      Assuming a true distance D0, classical analysis tells us that D is  
     (say) Normally distributed around D0, with a standard deviation of 0.1.   
!
     We are to imagine many repetitions of our experiment, each yielding a 
     value of the estimate D which dances around D0: form a confidence interval  
     (like  [8.2, 8.4]) which will also dance around randomly, but will contain  
     D0 with a probability we can calculate.   
!
 => Thus this approach assumes the thing we want to know, and tells us how the 
data will behave (!!!!!!! Is this what we want?????)
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- Bayesian approach circumvents all this! 
- deduces directly the probability distribution of D0  from the data.   
- assumes the data, and tells us the thing we want to know.  
- no imagined repetitions of the experiment. 
- conceptually clearer than classical methods. 
!

- but these are so well developed and established (particularly for the  
  Gaussian)  that we need to know how to handle them. 
!
¤ Remember that statistics of known usefulness are quite rare. 
!
¤ In many cases of astronomical interest we may need to derive useful 
    statistics for ourselves. 
¤  Maximum Likelihood is by far the easiest method. 
¤  So close to a Bayesian method that we may expect to be doing Bayesian,  
    not classical, inference.
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۞ Statistics are properties of the data and only of the data; they summarize, reduce,  
       or describe the data.  
!
۞ Variables such as µ and σ of the Poisson and Gaussian distributions 
       define these distribution functions and are NOT statistics. 
  
۞ We may anticipate that our data do follow these or other distributions 
  
۞ We may therefore wish to relate statistics from the data to parameters 
        describing the distributions. 
!
۞ This is done through Expectations or Expectation values, average properties  
        depending on distribution functions.  The expectation E[f(x)] of some function 
        f of a random variable x, with distribution function g, is defined as 
!
!
        i.e. the sum of all possible values of f, weighted by the probability of occurrence.  
!
۞ We can think of the expectation as being the result of repeating an experiment  
        many times, and averaging the results.  
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۞For example, compute an average value of <X>. If we repeat the experiment      
       many times, we will find that the average of <X> will converge to the true             
       mean value, the expectation of the function $f(x)=x$: 
!
!
۞ Note that the expectation is not to be understood as referring to a very large  
        sample; we can ask for the expectation value of a combination of a finite  
        number of data. 
!
۞ For example the statistic  S2 should likewise converge to the variance,  
       defined by 
!
!
!
۞ However,  we do have to take some care that the integrals actually exist.
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Take a Gaussian. Probability of getting a datum x near µ  is  
!
!
!
But what are the parameters µ and σ? Can easily show 
!
!
!
!
!
!
⇒Expect average <X> and mean square deviation S2 would be related to µ, σ2 

!
⇒In fact (<X>,S2) (functions of data alone) converge to (µ, σ2) when we  
        have plenty of data.
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We have a few of the data Xi but we want to know about all of them. 
We want their probability or frequency distribution cheaply (efficiently) and  
accurately (robustly, unbiased).  
!
Example: draw samples from a population obeying a Gaussian defined by  
 µ= 0, σ= 1.  How does size of sample affect estimates? 
!
!
!
!
!
!
!
!
!
!
!
(a) 20 values, (b) 100 values, (c) 500 values, (d) 2500 values. The average values  
 are 0.003, 0.080, -0.032 and -0.005; the median values 0.121, 0.058, -0.069  
and -0.003; and the rms values 0.968, 1.017, 0.986, and 1.001. Solid curves  
represent Gaussians of unit area and standard deviation.
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Thus at least four requirements: 
!
!
♫They should be unbiased, meaning that the expectation value of the  
       statistic turns out to be the true value.  
!
♫ They should be consistent, the case if the descriptor for arbitrarily  
        large sample size gives the true answer.  
!
♫ The statistic should obey closeness, yielding smallest possible  
       deviation from the truth.  
!
♫ The statistic should be robust. 



The dark energy puzzleExamples of shaky statistics

���13

!
Bias: for the Gaussian distribution,  <X> is an unbiased estimate of the mean µ,  
but the unbiased estimate of the variance σ2 is !!!!
which differs from the expectation value of S2 by the factor N/(N-1). σs

2, sometimes  
called the sample variance, is the estimator for the population variance σ2.  !!!
(The difference is understandable as follows. The Xi of our sample are first used to get 
<X>, an estimate of µ, and although this is an unbiased estimate of µ, it is the estimate  
which yields a minimum value from the sum of the squares of the deviations of the 
sample, and thus a low estimate of the variance. The theory provides the appropriate  
correction factor N/(N-1); of course the difference disappears as N becomes large.) 
!
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!!
Thus the  rms is a consistent measure of the standard deviation of a Gaussian distribution  
in that it gives the right answer for large N but it is a biased estimator for small N  
unless modified as above. !!
The Cauchy distribution looks somewhat  similar to a Gaussian. But with infinite variance,  
estimating dispersion via the standard deviation yields massive scatter and little info. !!
Robustness: consider a symmetric distribution with a few outliers (errors?). As a measure  
of central location the median is far more robust than the average.  !
Also consider salaries – mean vs median.
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The average is a very common statistic; it is what we are doing all the time, for  example, in 
`integrating' on a faint object. The variance:	

!
!
…and after some fiddling 	

!
!
!
!
The first term expresses generally-held belief :  the error on the mean of some data	

decreases like √N, as the amount of data is increased. This is one of the most 	

important tenets of observational astronomy.	

!
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!
!
But apart from infinite variances (e.g. the Cauchy distribution), the √N result holds 	

only when the last term is zero.  The term contains the covariance, defined as	

!
!
!
it is closely related to the correlation coefficient between xi and xj. 	

!
!
In the simplest cases, the data are independent and identically distributed [(probability 	

of xi and xj) = (probability of xi ) X  probability of xj)].	

!
=>covariance is zero. 	

!
This is a condition (probably the likeliest) for the √N  averaging away of noise.	

!
If it holds, errors are called ‘random’.  
!
If not – ‘systematic’ – but  there’s a continuum. 
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Often the thing we need to know is some function of the measured data.  
Knowing data error, how do we estimate error in the desired quantity? 
!
!
If the errors are small, by far the easiest way is to use a Taylor expansion.  Measure  
variables x,y,z... with independent errors δX, δY, δZ..., and we want  some 
function f(x,y,z...). Change in f caused by the errors is, to first order 
!
!
!
!
The variance on a sum is the sum of the variances of the individual terms (because  
the errors are assumed to be independent) so we get 
!
!
!
!
where the σ represent the variances in each of the variables.
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1. This leads to a well-known result for combining measurements: if we have n  
independent estimates, say Xj, each having an associated error σj, the best  
combined estimate  is the weighted mean 
!
!
!
where the weights are given by wj = 1/σj

2, the reciprocals of the sample variances.  
The  variance of the combined estimate is 
!
!
!
2.  Suppose f(x,y)=x/y. Then the rule gives us immediately 
!
!
!
=> we simply add up the relative errors.  
!
3. If f(x)=log(x) then the rule gives 
!
!
and the error in the log is just the relative error in the quantity we have measured.
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But we may need to know details of the probability distribution of the derived  
quantity.  
!
The simplest case is a transformation from the measured x, with probability  
distribution g, to some derived quantity f(x) with probability distribution h.   
Since probability is conserved, we have the requirement that 
!
!
!
!
!
so that h involves the derivative df/dx.  Beware if f is not monotonic!  
!
This technique rapidly becomes difficult to apply for more than one variable. 
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!
Results for some useful cases: 
!
1. Suppose we have two identically-distributed independent variables x and y,  
both with distribution function g.  What is the distribution of their sum z=x+y? For  
each x, we have to add up the probabilities of the all the numbers y=z-x that  
yield the z we are interested in.  The probability distribution h(z) is therefore 
!
!
!
!
!
where the probabilities are simply multiplied because of the assumption of independence.   
h is the autocorrelation of g.  The result generalizes to the sum of many variables, and  
is often best calculated using the Fourier transform of the distribution g.   
!
This transform is called the characteristic function.



The dark energy puzzleCombining distributions 3

���21

2. We often need the distribution of the product or quotient of two variables.   
Without details, the results are as follows: 
!
For z=xy, the distribution of z is 
!
!
!
For  z=x/y, the distribution of z is 
!
!
!
In almost any case of interest, these integrals are too hard to do analytically.
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!
Suppose we are taking the logarithm of some exponentially-distributed data.  
Here g(x)=exp(-x) for positive x, and f(x)=log(x). Applying our rule gives 
!
!
which has a pronounced tail to negative values and is correctly normalized to unity.  
Our simpler methods would give us δh = δx/x, which cannot give a good  
representation of the asymmetry of h. Quoting ``h ± δh'' is clearly not very informative. 
!
!
!
!
!
!
!
!
!
!
!
                The probability distribution of logarithm of data drawn from  
                                an exponential distribution. 
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Gaussian parent 
Select max of 10, 30, 50:
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Solid curve: A Schechter luminosity function xγexp[-x/x*], a useful model for the 
luminosity function of field galaxies. Take γ = 0.5, x* = 1. 

    Max of 10 galaxies 

    Max of 100 galaxies


