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!
!
We considered the traps of apparent correlations: bad data or data grouping; misleading  
formal significance; erroneous assumptions; dependence on third variables; and the error  
in assuming that a correlation means a causal connection. !
We moved on to formal testing, noting that most formal testing, Bayesian or classical, is based  
on the Bivariate Gaussian model, NON-PARAMETRIC ranking tests being the exception. 
!
We looked at Bayesian testing, computing the probability distribution for (ρ/data), From this                     
we can assess what we really want to know,  e.g. what is the probability that ρ is zero? Or that  
data set A is more highly correlated than B?  
!
We discussed the formalism for the classical tests, all classical tests: set up the null  
hypothesis, calculate a statistic, and from the sampling distribution for the statistic  
under the null hypothesis, find at what level of significance we can  reject it.  
!
For classical correlation testing, we looked the Fisher test (on r), and the Spearman Rank  
test. The latter (non-parametric) gets us safely away from the Bivariate Gaussian model . 
!
We noted the DIY method of random permutations of the x’s and y’s to get a sampling distribution 
for an invented statistic. !
We considered ‘what to do next’ issues; and Anscombe’s Quartet made an appearance.

When last we spoke ....
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In some data-modelling procedures, confidence intervals for the parameters fall out of  
the procedure. But are these realistic? And what about the procedures where they do  
not? Computer-power  and Monte Carlo (just coming) can provide the answers. 
!
Bootstrap (Efron 1979) is blatant ‘quick-and-dirty Monte Carlo‘. Our sample is  
of N data-points, each consisting of one or more numbers (e.g. single measurements,  
or [x,y] pairs), and we want the error on a parameter estimated from (e.g. the mean).   
We calculate the parameter using a modelling process (which we’ll come to…..). We then 
‘bootstrap' to find its uncertainty: 
!
 1. Label (number) each data-point. 
!
 2. Draw at random from the sample another sample of N, with replacement (simply  
done by computer with a random-number generator using the point-labels), i.e. your  
new sample may contain the 10th point more than once. 
!
 3. Recalculate the parameter. 
!
 4. Repeat this process as many times as possible. 
!
That's it! Provided that the data points are independent (in distribution  
and in order), the distribution of these recalculated parameters maps  
the uncertainty in the estimate from the original sample.

PCA - Example 3 - 2dF galaxy classification (3)Bootstrap and Jackknife testing
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Bhavsar (1990) showed that the bootstrap is well suited to  estimating uncertainty  
in measuring the slope of the angular two-point correlation function for galaxies.  This  
function w(θ)  measures the excess surface density over that expected from a random  
distribution at angular scales θ. The data-points are the (x,y) pairs of galaxy coordinates. 
!
!
!
!
!
!
!
!
!
!
!
Left: The two-point correlation function for 2812 radio sources with extended radio  
structure, from the NRAO 1.4-GHz survey of the northern sky. A least-squares fit  
gives a slope of -0.19. Right: The distribution of slopes obtained in bootstrapping the  
sample with 1000 trials; the slope is less than zero (i.e. signal is present) for  
96.8 per cent of the trials. 

Bootstrap - Example
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Similar to the bootstrap, first described by Tukey in 1958. 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
If the bootstrap can be used, it is computationally much cheaper.  
If both can be used, so much the better.

Jackknife
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Draw 10 samples from a Gaussian 
distribution of µ = 0 and σ = 1.0.  Calculate 
the variance Σ(xi - <x>)2/10. Do this  for 
1000 trials, and the result is the blue 
histogram of the upper diagram. 
!
The mean variance (blue vertical) is 0.8999, 
less than 1.0; the infamous 1/N vs 1/(N-1) 
issue rears its ugly head. 
!
Calculate the variances using the jackknife 
method for each of 1000 similar trials - the 
red histogram of the lower diagram. The 
peak has shifted to larger values; in fact 
the mean is 0.9834,  very close to 1.0.  
!
The jackknife variance is larger than the 
standard variance.  
!
Bias has been removed. 

Jackknife - Example
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!
Partial correlation between two variables is taken into account by nullifying the  
effects of the third (or fourth, or more) variable upon the variables being considered.   
A science in itself; there are books … 
!
Parametric form - consider a sample of N objects for which 3 parameters X1, X2,  
and X3 have been measured. The first-order partial correlation coefficient  
between variables X1 and X2 is 
!
!
where the r are the product moment coefficients. 
If there are 4 variables, then the second-order partial correlation coefficient  
is 
!
!
where the correlation is being examined between X1 and X2 with X3 and X4 held  
constant. Manipulate the subscripts for the rest…. The standard error of the partial  
correlation coefficients is  
!
!
where m is the number of variables involved. The significance then comes from  
the t test, as we’ve done before.

Partial correlation
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Sample of N=10 young males aged 12 to 19.  
!
Correlation between height (X1)and weight (X2) will be high because older = taller  
on average, and older = heavier on average. So we recognize  the presence of a  
third variable, age (X3). 
!
But with age (X3) held constant, the correlation would still be significantly positive 
because at all ages, taller = heavier (on average), common sense would tell us? 
!
We want to know if there is a real correlation between height (X1) and weight (X2). 
!
Correlation coefficient between height and weight   r12   =  0.78 
                                    between height and age       r13   =  0.52  
                             and between weight and age      r23   =   0.54   
!
The first-order partial coefficient of correlation is thus r12,3 = 0.69; and σ12.3 = 0.198  
!
The correlation is significant at the level of 0.2% (2 chances in 1000 that it could  
arise by chance if NO true correlation were present.)

Partial Correlation - Example
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Let’s do this again. 
!
!
We have a pair of experimental measurements (Xi,Yi), each with  
uncertainty σx, σy associated with it, Gaussian ‘experimental resolution’. For each:  
!
!
!
!
!
!
If Xi and Yi are independent,  
!
!
!

Back to the Bivariate Gaussian / Covariance Matrix
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!
This will be down on the origin value by √e when  
!
!
!
!
Why choose this value? Because it corresponds to the 1D case when x = ± σ. 
!
We can rewrite the original probability equation as  
!
!
!
!
and we can invert the 2x2 matrix to get the matrix: 
!
!
This is known as the error (covariance) matrix for x and y. 
Off-diagonal zeros show that x and y are uncorrelated. 

Back to the Bivariate Gaussian / Covariance Matrix
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In general each error-matrix element of a set of variables x1,x2,x3…xn is 
defined as the  expectation value   <(xi - <xi>)(xj - <xj>)> 
!
The error matrix is symmetrical, and off-diagonal elements are cov(xi,xj). 
In the previous example the diagonal terms are zero – errors of x and y are 
uncorrelated.

Left: σx = 1.0, σy = 0.5, ρ = 0 and 0.95. Right: σx = 0.2, σy = 1.0, ρ = 0 and 0.95

Error (covariance) matrices, continued
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We have a set of measurements (Xi, Yi) and we ask (formally) if they are related to  
each other. What does ‘related’ mean? In general we model our data as a bivariate  
or joint Gaussian of correlation coefficient ρ:

This model is so well developed that ‘correlation’ 
and ‘ρ ≠ 0’ are nearly synonymous;  if ρ → 0 there is 
little correlation, while if ρ → 1 the correlation is 
perfect. 
!
Left: linear contours of the bGpd. Near circular:  
ρ = 0.01, little connection between x and y;  
highly elliptical: ρ = 0.99, strong correlation  
between x and y. Negative values of ρ reverse  
the tilt: ‘anticorrelation’.

Correlation: standard model
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Correlation: standard model, continued
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PCA is the ultimate correlation searcher when many variables are present. 
  
Given a sample of N objects with n parameters measured for each, what is  
correlated with what?  
!
What variables produce primary correlations, and what produce secondary, via the  
lurking third (or indeed n-2) variables? 
!
PCA is one of a family of algorithms (known as multivariate statistics)  designed for  
this situation. Its task: given a sample of N objects with n measured variables xn,  
find a new set of ξn variables that are orthogonal (independent), each one a 
linear combination of the original variables: 
!
!
with values of aij such that the smallest number of new variables account for as  
much of the variance as possible. The ξi are the principal components.  
If most of the variance involves just a few of the n new variables, we have found  
a simplified description of the data.  
!
Finding which of the variables correlate (and how) may lead to success on our fishing  
expedition - we may have caught new physical insight.

Principal Component Analysis (PCA)
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(1) Geometric approach: Back to the early Hubble diagram, 24 galaxies with two  
measured variables, recession velocity v and distance d. Procedure: 
!
a.  Normalize by subtracting the means from each variable and divide by the std dev,  
i.e. plot vi’ = (vi - <v>) / σv vs  di' = (di - <v>) / σd                      
!
!
!
!
!
!
!
!
!
!
!
 b. Find the first principal component by rotating the axis through the origin to align  
       with max elongation, the direction of apparent correlation, using least-squares. 

PCA - Example 1
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PCA - Example 1 continued
- the variance along PC1 is equivalent to minimizing the sums of the  
       squares of the distances of the points from this line through the origin. 
  
 - The distance of a point from the direction PC1 (dotted verticals) represents the  
      value (score) of PC1 for that point.  
!
 - PC1 is clearly a linear combination of the two original variables; in fact it is v' = d'.  
!
 - Because the new coordinate system was found by simple rotation, distances  
      from origin are unchanged; the total variance of v' and d' remains 2.0.  
!
- The variance of PC1, the normalized distances squared from PC2, is 1.837. 
!

!
!
!
!
!
!
The table sets out the the results in the standard way  
of PCA.

- The remaining variance of the sample must be 
accounted for by the projection of data points onto the 
axis PC1, perpendicular to PC2; lengths of these are 
scores of the second principal component PC2, and 
this is verified as 0.163; sum = 2.0. 

!
!
!



!17

!
!
(2) Matrix approach. 
!
(a) Construct the error matrix. i.e.  for the two-variable  
      case of the example, a(1,1) = Σd'2, a(2,2) = Σv'2 , 
      a(1,2) = a(2,1) = Σv’d’. 
!
(b) Seek a principal axis transformation that makes the cross-terms vanish, an axis                       
      transformation to rotate the ellipses of our BVGD so that the axes of the ellipses   
      coincide with the principal axes of the coordinate system. 
  
     This is simple in matrix notation! (1) We determine the eigenvalues of the error  
     matrix and form its eigenvectors (for the example, v' = d' and v' = -d'  
     as seen in the Hubble figure.)  
!
     Then (2) we use these eigenvectors to form the transpose matrix T, for  
     variable-transformation and axis-rotation.  
!
     The axis rotation diagonalizes the matrix, i.e. in the new axis  system, the cross 
     terms are zero; we have rotated the axes until there is no (v’,d’) covariance. 
 

PCA - Example 1 continued
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 - Our data are reduced from 48 numbers for the 24 galaxies to 4 numbers,  a  2 x 2 matrix.  
    How?  PCA assumes that the covariance (error) matrix describes the data. 
!
 - This is the case if data are drawn from a multivariate Gaussian  or in general when a simple  
   quadratic form, using the covariance matrix, can describe the distribution of the data.  
!
 - But the clouds of points in most n-variate hyperspaces will NOT be so simply distributed. !
 - In multivariate data sets, the disparate units are taken care of by normalizing: subtracting  
   mean values and dividing by variances.  
!
 - This is not a prescription. The variance for any particular variable might be dominated  
    by an outlier which there are good grounds to reject. The choice of weights does  
    therefore depend on familiarity with the data and preferences – room for subjectivity.  
!
 - PCA is a linear analysis and tests need to be performed on the linearity of the  
   principal components. For example, plotting the scores of PC1 vs PC2  
    should show a Gaussian distribution consistent with ρ = 0.  
!
 - It may be apparent how to reject outliers or to transform coordinates to reduce  
   the problem to a linear analysis. In large datasets such processes can reveal  
    unusual objects.

PCA notes
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The Francis and Wills sample of QSOs, 1999

                   log             logFWHM    FeII/    logEW  logFWHM logEW logEW CIV/    logEW   SiIII/        NV/        λ1400/ 

PG name    L1216               αx       Hβ     Hβ      [OIII]       CIII]       Lyα      CIV     Lyα     CIII]     CIII]      Lyα         Lyα  !
0947+396   45.66  1.51   3.684  0.23  1.18  3.520  2.08   1.78  0.45  1.24  0.306  0.179  0.143 
0953+414   45.83  1.57   3.496  0.25  1.26  3.432 2.19    1.78  0.40  1.24  0.164  0.189  0.093 
1114+445   44.99  0.88   3.660  0.20  1.23  3.654 2.27    1.85  0.42  1.48  0.222  0.175  0.092 
1115+407   45.41  1.89   3.236  0.54  0.78  3.403 1.90    1.51  0.33  1.14  0.385  0.228  0.134 
1116+215   46.00  1.73   3.465  0.47  1.00  3.446 2.14    1.71  0.34  1.20  0.440  0.254  0.126 
1202+281   44.77  1.22   3.703  0.29  1.56  3.434 2.72    2.41  0.69  1.87  0.164  0.154  0.098 
1216+069   46.03  1.36   3.715  0.20  1.00  3.514 2.12    1.95  0.54  1.20  0.037  0.121  0.056 
1226+023   46.74  0.94   3.547  0.57  0.70  3.477 1.64    1.44  0.45  1.00  0.280  0.174  0.018 
1309+355   45.55  1.51   3.468  0.28  1.28  3.406 2.01    1.68  0.41  1.15  0.303  0.131  0.064 
1322+659   45.42  1.69   3.446  0.59  0.90  3.351 2.19    1.85  0.41  1.30  0.291  0.135  0.097 
1352+183   45.34  1.52   3.556  0.46  1.00  3.548 2.14    1.80  0.41  1.29  0.357  0.203  0.116 
1402+261   45.74  1.93   3.281  1.23  0.30  3.229 1.91    1.59  0.39  1.09  0.568  0.227  0.161 
1415+451   45.08  1.74   3.418  1.25  0.30  3.434 2.32    1.78  0.29  1.40  0.688  0.210  0.142 
1427+480   45.54  1.41   3.405  0.36  1.76  3.300 2.03    1.82  0.49  1.21  0.265  0.126  0.117 
1440+356   45.23  2.08   3.161  1.19  1.00  3.192 2.14    1.54  0.21  1.05  0.747  0.141  0.092 
1444+407   45.92  1.91   3.394  1.45  0.30  3.479 1.99    1.34  0.21  1.06  0.809  0.335  0.164 
1512+370   46.04  1.21   3.833  0.16  1.76  3.546 2.02    2.05  0.75  1.28  0.228  0.182  0.050 
1626+554   45.48  1.94   3.652  0.32  0.95  3.631 2.14    1.80  0.39  1.36  0.197  0.217  0.118

PCA - Example 2
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(1) – subtract mean and divide by std dev:      
!
      qso\data:   1      2        3          4       5        6          7      8        9        10        11       12       13 
        1           0.14 -0.14   1.014  -0.80  0.39  0.636  -0.13  0.09  0.215 -0.069 -0.252 -0.170  1.005 
        2           0.52  0.04  -0.061  -0.75  0.57 -0.103   0.39  0.09 -0.157 -0.069 -0.934  0.022 -0.300 
        3          -1.35 -2.03   0.877  -0.88  0.50  1.760   0.77  0.38 -0.008  1.175 -0.655 -0.246 -0.326 
        4          -0.42  0.99  -1.548  -0.04 -0.55 -0.346  -0.99 -1.06 -0.678 -0.588  0.128  0.771  0.770 
        5           0.89  0.51  -0.238  -0.21 -0.03  0.015   0.15 -0.21 -0.604 -0.276  0.392  1.270  0.561 
        6          -1.84 -1.01   1.123  -0.66  1.27 -0.086   2.90  2.77  2.001  3.197 -0.934 -0.649 -0.170 
        7           0.96 -0.59   1.192  -0.88 -0.03  0.585   0.06  0.81  0.885 -0.276 -1.544 -1.283 -1.266 
        8           2.54 -1.85   0.231   0.03 -0.73  0.275  -2.22 -1.36  0.215 -1.313 -0.377 -0.265 -2.258 
        9          -0.11 -0.14  -0.221  -0.68  0.62 -0.321  -0.47 -0.34 -0.083 -0.536 -0.266 -1.091 -1.057 
       10         -0.40  0.40  -0.347   0.08 -0.27 -0.782   0.39  0.38 -0.083  0.242 -0.324 -1.014 -0.196 
       11         -0.57 -0.11   0.282  -0.24 -0.03  0.870   0.15  0.17 -0.083  0.190 -0.007  0.291  0.300 
       12          0.31  1.11  -1.291   1.64 -1.66 -1.805  -0.94 -0.72 -0.232 -0.847  1.007  0.752  1.475 
       13         -1.15  0.54  -0.507   1.69 -1.66 -0.086   1.00  0.09 -0.976  0.760  1.584  0.425  0.979 
       14         -0.13 -0.44  -0.582  -0.48  1.74 -1.210  -0.37  0.26  0.513 -0.225 -0.449 -1.187  0.326 
       15         -0.82  1.56  -1.977   1.55 -0.03 -2.116   0.15 -0.94 -1.571 -1.054  1.867 -0.899 -0.326 
       16          0.72  1.05  -0.644   2.18 -1.66  0.292  -0.56 -1.79 -1.571 -1.002  2.165  2.824  1.553 
       17          0.98 -1.04   1.867  -0.97  1.74  0.854  -0.42  1.23  2.448  0.138 -0.626 -0.112 -1.423 
       18         -0.26  1.14   0.831  -0.58 -0.15  1.567   0.15  0.17 -0.232  0.553 -0.775  0.560  0.352

PCA - Example 2 continued (2)
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‘Data adjustment', weighting, normalizing, is 
critical to the outcome! !
Do we understand the significance of the results?
Has the error/covariance matrix done the job we  
expect of it?  !
NB many ways of ‘adjusting’: logs of the data, 
weighting by factors other than std devs, use 
of prior knowledge, etc.  !
For the present data: the figure plots the run of  
the 18 points, one from each QSO, for each of  
the 13 data, i.e. 13 mini-plots. 
!
Looks OK! All points are there; only  
one deviation >3σ in 234 points, close to  
expected for Gaussian stats, and the  
distributions look reasonable. Results will be 
understandable.

PCA - Example 2 continued (3)
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(2) Construct the covariance or error matrix. This is a  13 x 13 symmetric matrix:

 1.0000 -0.1530  0.1135 -0.0414 -0.1420  0.0627 -0.7656 -0.4387  0.0620 -0.6803 -0.0962  0.1764 -0.3794 
 -0.1530  1.0000 -0.6775  0.6117 -0.5009 -0.4853 -0.0647 -0.4348 -0.6603 -0.3460  0.6255  0.4159  0.6514 
  0.1135 -0.6775  1.0000 -0.7000  0.5029  0.7748  0.2860  0.6694  0.7656  0.5151 -0.7008 -0.2118 -0.4287 
 -0.0414  0.6117 -0.7000  1.0000 -0.7829 -0.5204 -0.1602 -0.5852 -0.6826 -0.3701  0.9295  0.5139  0.5182 
 -0.1420 -0.5009  0.5029 -0.7829  1.0000  0.1549  0.3013  0.6476  0.6979  0.3944 -0.6505 -0.5894 -0.4519 
  0.0627 -0.4853  0.7748 -0.5204  0.1549  1.0000  0.1207  0.2595  0.2923  0.3465 -0.4627  0.1881 -0.1898 
 -0.7656 -0.0647  0.2860 -0.1602  0.3013  0.1207  1.0000  0.7653  0.2489  0.8897 -0.1574 -0.1864  0.1630 
 -0.4387 -0.4348  0.6694 -0.5852  0.6476  0.2595  0.7653  1.0000  0.7925  0.8609 -0.6196 -0.4830 -0.2307 
  0.0620 -0.6603  0.7656 -0.6826  0.6979  0.2923  0.2489  0.7925  1.0000  0.5117 -0.7328 -0.4608 -0.5046 
 -0.6803 -0.3460  0.5151 -0.3701  0.3944  0.3465  0.8897  0.8609  0.5117  1.0000 -0.3930 -0.2054  0.0287 
 -0.0962  0.6255 -0.7008  0.9295 -0.6505 -0.4627 -0.1574 -0.6196 -0.7328 -0.3930  1.0000  0.5622  0.5626 
  0.1764  0.4159 -0.2118  0.5139 -0.5894  0.1881 -0.1864 -0.4830 -0.4608 -0.2054  0.5622  1.0000  0.6198 
 -0.3794  0.6514 -0.4287  0.5182 -0.4519 -0.1898  0.1630 -0.2307 -0.5046  0.0287  0.5626  0.6198  1.0000

Here it is – nb diagonal elements are all 1.0, as they must be.

PCA - Example 2 continued (4)



(3) Solve 13 - 13th order equations in 13 unknowns to get the eigenvalues of this matrix!  
Jacobi rotations: each plane rotation or transformation gets rid of one off-diagonal matrix  
 element. ``absolutely foolproof for all real symmetric matrices" – NumRec.   
!
The NumRec routine  jacobi, when supplied with the covariance matrix, returns the 
eigenvalues, the array of eigenvectors, and the number of rotations required, which 
turns out to be about  3x132 = 500. The cpu time required is insignificant. My results: 
Rotations: 459 
Eigenvalues: 6.451  2.820  1.589  0.624  0.565  0.343  0.261 0.172 0.122 0.023  0.019  0.010  0.002 
Eigenvectors: 
   PC1    PC2    PC3    PC4     PC5     PC6     PC7    PC8     PC9    PC10   PC11   PC12   PC13 
 -0.055  0.534   0.126 -0.018   0.408  0.193  -0.128 -0.322  -0.418  0.075   0.250   0.280  -0.226 
 -0.294 -0.197 -0.082   0.490   0.151  0.511  -0.456  0.146   0.282  0.090   0.147  -0.018  -0.071 
  0.330  0.077   0.357 -0.081   0.149  0.133  -0.213  0.422  -0.296   0.111   0.150  -0.480  0.366 
 -0.342 -0.139  -0.006 -0.484   0.222 -0.001 -0.074   0.184   0.013   0.656 -0.297   0.146   0.015 
  0.310  0.016  -0.252  0.396    0.093 -0.619 -0.389  -0.017 -0.064   0.352  -0.019   0.105  0.018 
  0.198  0.075   0.624   0.044  -0.399  0.007 -0.183   0.234   0.132  0.064  -0.129   0.394  -0.351 
  0.177 -0.503   0.005  -0.138  -0.026  0.127 -0.312  -0.352 -0.396  -0.101 -0.283  -0.242  -0.391 
  0.336 -0.262  -0.051  -0.046   0.302  0.196 -0.049   0.046 -0.041  -0.276  -0.214   0.601  0.441 
  0.342  0.064  -0.031  -0.067   0.581 -0.034   0.180  0.215   0.411 -0.112  -0.128  -0.171 -0.479 
  0.261 -0.414   0.124  -0.177   0.012  0.016   0.146 -0.257   0.203  0.294   0.698   0.101  -0.016 
 -0.342 -0.149   0.015  -0.310   0.125 -0.399 -0.362   0.301 -0.056  -0.469  0.348   0.106  -0.113 
 -0.231 -0.053   0.571   0.112   0.288 -0.258 -0.088  -0.465  0.291  -0.083 -0.190  -0.159   0.279 
 -0.223 -0.351   0.225   0.441   0.207 -0.136   0.499  0.251  -0.424  0.054   0.019   0.087  -0.135

PCA - Example 2 continued (5)
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The Francis-Wills results table: !
(1) Cols (2)-(6) show the first 5 principal components.  
!
(2) First row gives variances (eigenvalues) of  
      the data along the direction of the corresponding  
      principal component.  !
(3) The sums of the variances add up to the sums  
      of the variances of the input variables, here13.  !
(4) Principal components are given in order of  
      contribution to the total variance: ’Proportion’  
      on the 2nd line,  ‘Cumulative proportion’ on 3rd. 
  
(5) The first principal component contributes 50% of the spectrum-to-spectrum variance, the  
      2nd 22%, 3rd 12%. The first 3 components contribute 84% of the variance. !
(6) The cols of numbers for each principal component represent the weights assigned to  
      each input variable. Thus PC1 = 0.053x1 + 0.295x2 - 0.330x3…, where x1, x2, x3 are the  
      values of the normalized variables corresponding to log L1216, αx, FWHM Hβ, etc. By  
      convention these weights are chosen so that the sum of their squares = 1, arbitrarily  
      fixing the scale of the new variable. The sign of the new variable is also arbitrary.

PCA - Example 2 continued (6)



!25

!
(4) Check it out. Simple test of this step: the eigenvalues must add up to the  
trace of the array, the sum of the diagonal elements, =13 here. 
!
For eigenvalues to be significant, they must be greater than 1.0. How to test this? 
(a) Remove any variable, and recompute, to assess how much it contributes to any  
      particular eigenvalue. 
!
!
!
!
!
!
!
!
!
!
(b) Find the errors (uncertainties) on the eigenvalues. Bootstrap is perfect for this – 
      see the right figure, 10000 trials. The widths of the distributions are reflected in  
      the error bars in the left figure.  
!
Eigenvalues 1, 2 and maybe 3 are significant. The rest – garbage. 

PCA - Example 2 continued (7)
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1.  The first principal component is elongated      
      with variance about 6.5 times that of any  
      individual measurements, and accounts for  
      ~50% of the total variance. This is therefore  
      likely to be highly significant.  
!
2. If all measured, normalized quantities  
     contributed equally to PC1, they would all have  
     weight 0.277 (1√13 for 13 variables), but the  
     variables contribute more or less than this.  
!
3. To test the significance of the  
     contribution of any one measured variable, perform the PCA without that 

variable, then check the significance of the correlation between that 
variable and the scores of the new principal component.  

!
4. This procedure shows that all measured variables except L1216, log FWHM CIII], 

and log EW Lyα, correlate with PC1, but correlations involving NV/Lyα and 
λ1400/Lyα are not very strong. 

PCA - Example 2 continued (8)
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5. PC2, accounting for 22% of the variance  
    in this dataset, appears to link the EW Ly α,  
    EW CIV, and EW CIII] with L1216, so  
    EW CIV and EW CIII] appear to contribute  
    to both PC1 and PC2, but EW Lyα  
    contributes predominantly to PC2.  
!
6. Is PC2 a significant component? A similar  
    correlation test shows that individually the  
    EWs do anti-correlate with L1216, but this  
    result depends on the lowest EWs for the  
    highest luminosity QSO PG1226+023  
    (3C273) and the highest EWs for the low- 
    luminosity QSO PG1202+281. However L1216 correlates significantly (Pearson's  
    ordinary correlation coefficient = -0.77) with PC2 formed when  L1216 is excluded.  
     
7. Thus there is a significant overall correlation between EW and L1216, although   
    a larger sample is clearly needed to investigate the individual EW correlations.  
    Another test is to check correlations between observed measurements for  
    those measurements that contribute to only one significant   
    principal component – for example, CIV/Lyα vs. FeII/Hβ...”

PCA - Example 2 (9) F&W commentary con’t



PCA represents the ultimate way of searching for correlations in a stack 
    of data. It is so simple to perform and no special numerical skills are 
   required. There are a few buts: 
!
  The distribution of points in the multi-dimension space must be essentially ڲ
    unimodal. Consider the two-blob case… 
!
 Thus the data need to be of quadratic form; they need to cluster continuously  ڲ
     around the PC, but they need not do this necessarily in a Gaussian manner. In 
    fact the method is immensely forgiving in terms of distribution, provided the 
    unimodal condition is met. 
!
  Check at the start what the form of the data scatter will be. Look at plots! It ڲ
    may be worth considering other methods of central location for zero- 
    pointing, such as the median; and normalizing other than via an rms std dev. 
!
  .PCA software is available in widely used software packages - SPSS, SAS, Minitab ڲ
    It is also available at Francis's web site http://msowww.anu.edu.au/~pfrancis 
    If using this, please observe the acknowledgement requested by Paul.

PCA - more stuff
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♣ Some PCA problems have a larger number of variables than input observables,  
    m > N, resulting in singular matrices requiring modifications to standard techniques  
    to solve the eigenvector equations.  
!
♣ This situation occurs in spectral PCA for which the m variables are fluxes in  
    wavelength or frequency bins. Singular Value Decomposition…. 
!
♣ The technique is ideal for dealing with a huge sample and was therefore adopted  
    in the 2dF survey which aimed to measure 250,000 galaxy spectra to provide a  
    detailed picture of the galaxy distribution out to a redshift of 0.25.  
!
♣ The PCA approach to 2dF galaxy classification is discussed in detail by Folkes 
    et al. (1999). 

PCA - Example 3
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Left: four examples of 2dF spectra prepared for PCA. Right: the mean spectrum,  
and first three principal components. These three  components represent the  
eigenvectors of the covariance matrix of these prepared  spectra. In this example,  
the first PC accounts for 49.6 per cent of the variance;  the first three 
components account for 65.8 per cent of the variance. Much of the  remainder is 
due to noise.

PCA - Example 3 -2dF galaxy classification
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Right: distribution of 2dF 
galaxy spectra in the PC1 - PC2 
plane.  Slanted lines divide the 
plane into the five spectral 
classes adopted by Folkes et al.; 
the positions of galaxies typed 
by Kennicut (1992) are shown. 
!
!
!
Note how asymmetrical the 
distribution looks. This need not 
invalidate the analysis -- here 
primarily one of classification -- 
but the effectiveness must in 
general be reduced. Asymmetrical 
shapes in the PC planes must 
result in unquantifiable  errors in 
the classification.

PCA - Example 3 - 2dF galaxy classification (2)
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The key aspect Folkes et al wished to 
address was how luminosity function 
depends on galaxy type.  !
The objects in the PC1 -- PC2 plane 
form a single cluster, blue emission-
line objects to the right, red objects 
with absorption lines to the left, and 
strong-emission-line objects straggling 
downward.  !
Five spectral classes were then 
adopted, shown by the slanted lines.  !
Confirmation that these spectral 
classes correspond to morphological 
classification came from placing the 
55 Kennicut (1992) standard galaxies 
into this plot; the 5 classes are roughly 
E/SO, Sa, Sb, Scd and Irr. 

The way ahead to use the PCA classes to work out luminosity functions for each is  
clear, and the punch line is that significantly different Schechter functions emerged  
for each class.

PCA - Example 3 - 2dF galaxy classification (3)PCA - Example 3 - 2dF galaxy classification (3)PCA - Example 3 - 2dF galaxy classification (3)
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Reindeer Graphics: FoveaPro Principal Component Analysis: The ultimate color  
transform, from 2 to 56 channels. 
In optical science, a prism is used to break up white light into its componenty colors.  The Reindeer  
Graphics PCA plugins do something similar for color and multichannel images. They find the principal  
colors that make up the image, and in so doing isolate the  information in new and very useful  
ways. This is not just a matter of converting from  RGB to Lab, CMYK, HSL, or some other standard  
color space. Rather, the method  defines a fundamental set of basic color coordinates unique to  
each image. The technique used is a standard statistical method, rarely applied to image data, called  
Principal Component Analysis.

PCA - Example 4 - a colour transform
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In the process of computing the Principal Components of this set of images, a rotation  
in 5-space (because there are five images) with a set of new images created. Below are  
the most significant (73.69% - left) and the least significant (0.27% - right) channels  
after the transform. Notice that the JPEG artifacts from the set of images have all  
appeared in the bottom channel (right). This characteristic of PCA will prove useful for  
removing both pattern noise (such as JPEG and DV encoding) and random noise  
within images, below.

PCA - Example 4 - a colour transform (2)
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Another useful trick with PCA is to place the most significant three channels into 
the Red, Green, and Blue channels of a standard RGB image. In this image, Red 
contains the primary component (73.69%), Green holds the second component 
(21.67%), and  Blue holds the third component (3.31%). Only a tiny fraction 
remains unaccounted for (1.34%) and most of that is the JPEG signature.

PCA - Example 4 - a colour transform (3)


