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Hypothesis Testing
Fisher, Sir Ronald Aylmer, 1890 - 1966. 

‘.. if he had stuck to the ropes he would have  
made a first class mathematician, but he would not.’ 
                                            - his tutor at Cambridge 
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Remembering that we were dealing with correlation, and PCA 
There are many pitfalls! 

- Both Bayesian and classical tests for correlation generally depend upon the bi- or 
     multi-variate Gaussian model, with correlation coefficient(s) ρ. In the classical 
     case we are trying to reject the null hypothesis, that ρ is zero.  

- The only escape from the bi-/multi-variate Gaussian is using the non-parametric 
      version of the classical tests. 

- Partial correlation is a painful exercise in subscripts – it is used by many, and there is 
     a large literature. It is easy enough to carry out, following the prescriptions and  
     using the conventions of the classical (Fisher) test for correlation significance. 

- Principal Component Analysis is really the way to search a data-set objectively to 
   determine what depends on what -  it is the ultimate correlation searcher. 

- We did a couple of examples in detail to show how it works. It is easy enough 
       to implement, is hands-off in terms of deciding what to test against what, and it 
       leaves all the difficult stuff to the physical interpretation at the end. Or so we  
       thought until we tried the assignment?  

We now return to look more carefully at the whole area of hypothesis testing.

We’re back ....
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The essential divide:

 - non-parametric Bayesian tests do not exist (more or less). 

 - If we understand the data so that we can model its collection process, then  

                                                     GO BAYES.

Bayes/frequentist/parametric/non-parametric?
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There are situations when classical methods are essential: 

      1. If we are comparing data with a model and we have very few of these data;  
                          or  
       If we have poorly defined distributions or outliers, 

       then we do not have an adequate model for our data. Moreover we’ll have to  
       call on non-parametric methods. 

       2. Classical methods are widely used. We therefore need to understand  
       results quoted to us in these terms. 

The classical tests involve us in ‘rejecting the null hypothesis’, i.e. rejecting  
rather than accepting a hypothesis, at some level of significance.  

This null hypothesis may not be one in which we have the slightest interest.  

A process of elimination.  

A classical test works with probability distributions of a statistic while the Bayesian  
method deals  with probability distributions of a hypothesis –one in  
which we may be very interested.

Rejection; elimination
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1. Set up two possible and exclusive hypotheses, each with an associated  
terminal action: 

     H0, the null hypothesis or hypothesis of no effect, usually formulated  
         to be rejected 

     H1, an alternative, or research hypothesis. 

2. Specify  a priori the significance level α. Choose a test which (a) approximates  
the conditions and (b) finds what is needed; obtain the sampling distribution and  
the region of rejection, whose  area is a fraction α of the total area in the  
sampling distribution. 

3. Run the test; reject H0  if the test yields a value of the statistic whose  
probability of occurrence under H0 is < α. 

4. Carry out the terminal action.

Classical Testing - the Neyman-Pearson Method
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There is no such thing as an inconclusive hypothesis test. 

Type I error : H0 is in fact true; the probability is the probability of  rejecting H0, i.e. α.   

Type II error : H0 is false; the probability is the probability β of the  failure to reject a  
                        false H0. β is not related to α in any direct or obvious way.  

The power of a test is the probability of rejecting a false H1, or (1- β). 

The sampling distribution is the p.d. or pdf of the test statistic. The probability of  
any value of the test statistic occurring in the region of rejection is less than α.  

But where the region of rejection lies within the sampling distribution depends 
on H1. If H1 indicates direction, then there is a single region of rejection and the test  
is one-tailed; if no direction is indicated, the region of rejection is comprised of the  
two  ends of the distribution and we are dealing with a two-tailed test.   

This is the only use we make of H1; the testing procedure can only convince us to  
accept H1  if it is the sole alternative to H0.  The procedure of elimination serves   
to  reject H0, not prove H1.  Beware -- it is human nature to think  
that your H1 is the only possible alternative to H0.

Classical Testing - the Devil is in the Detail
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If we don’t have a well-defined H1, then a threshold for action makes no sense 
(Fisher’s objection).  

Maybe calculate p - notice that it is uncomfortably small – think about other 
possibilities? This is OK as long as we don’t ascribe a probability to our  
rejection of H0. 

Suppose we have a critical value of our test statistics, say tc. Assume that the 
chance of exceeding tc under H0 is α. We then compute our test statistic T. 
compare with tc, reject H0 (accept H1) if T > tc. Here are the possibilities: 

  

Note probabilities of A and C add up to 1.0, and so do probabilities B and D 

BUT THERE IS NO RELATIONSHIP ALONG THE ROWS, i.e. there is no  
relationship between Type I error rate and Type II error rate. 

The probability of B being occupied is the POWER; tradoff is  
between POWER and TYPE I ERROR RATE.

Classical Testing: the Devil is STILL in the Detail
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Normally-distributed parent populations: the “Student's" t test (comparison of means)  
and the F test (comparison of variances).  

Let’s have n data Xi drawn from a Gaussian of mean µx, and m other data Yi, drawn  
from a Gaussian of identical variance σ2 but a different mean µy. 

The Bayesian method: calculate the joint posterior distribution assuming a prior,  
integrating over the ‘nuisance’ parameter σ, to get the joint prob(µx, µy). From this  
we can calculate the probability distribution of (µx - µy). The result depends on the data  
via a quantity 

The distribution for t’ is 

By this route we do not really hypothesis-test.  We regard the data as fixed and 
(µx - µy) as the variable,  simply computing the probability of any difference in the means. 
We might work out the range of differences which are, say,  
90% probable,  or carry the distribution of mean difference on  
into a later probabilistic calculation.

Tests for Means and Variances - 1
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Classical approach: We do not treat the µ's as random variables.  Instead we 
guess that the difference in the averages (<X> - <Y>) will be the statistic we need;  
and we calculate its distribution on the null hypothesis that µx = µy.  
We find that 

follows a t-distribution with ν degrees of freedom. 

This is the basis of a classical hypothesis test, the Student’s t test for means.   
Assuming that µx - µy = 0, (the null hypothesis) we calculate t.  If it (or some greater  
value) is very unlikely (see a t-table), we think that the null hypothesis is ruled out. 

The t-statistic is heavy with history and reflects an era when analytical calculations  
were essential.  The penalty is total reliance on the Gaussian. However, with  
cheap computing power - 

we may expect to be able to follow the basic Bayesian approach.

Tests for Means and Variances - 2
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By analogous calculations,  we can arrive at the F test for variances.  Again,  
Gaussian distributions are assumed.   

The null hypothesis is σx = σy, the data are Xi (I = 1 … N) and Yi (I = 1 … M)  
and the test statistic is 

This follows a F-distribution with N-1 and M-1 degrees of freedom (F table). 

The testing procedure is the same as for Student's t.  

This statistic will be particularly sensitive to the Gaussian assumption.

2

2

Tests for Means and Variances - 3
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Take two small sets of data, from Gaussian distributions of equal variance: 
 -1.22, -1.17, 0.93, -0.58, -1.14 (mean -0.64), and  
  1.03, -1.59, -0.41, 0.71, 2.10 (mean 0.37), pooled std dev of 1.2.   
The standard t-statistic = 1.12.   

If we do a two-tailed test (not caring whether one mean is larger than another),  
we find a 30% chance that these data would arise if the means were the same.   

The one-tailed test (testing whether one mean is larger) gives 16%. 

Bayesian point of view? We can calculate  
the distribution of (µx - µy) for the same data.   
In the Fig we can see clearly that one mean is  
smaller; the odds on this being so are about  
10 to 1, as can be calculated by integrating  
the posterior distribution of the difference of  
means. 

          Distribution of the difference of means for the 
             example data.

Tests for Means and Variances - Example 1
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Relaxing the assumption of equal variances may be important.  The distribution of the 
difference in means without this assumption is called the Behrens-Fisher distribution.   
It is a rare example of a Bayesian analysis having no classical analogue; there is no  
classical test for the case of possibly unequal variances. 

The analytical form of the Behrens-Fisher distribution is complicated and involves a  
numerical integration anyway, so we may as well resort to a computer right away to  
calculate it from Bayes' Theorem. Assume our two std Gaussians in x and y, now with 
their very own σx and σy.   The joint posterior distribution (using the Jeffreys prior on  
the σ) is 

We have to do a multidimensional integration to get rid of the two nuisance parameters 
 (σx and σy) and to ensure that the resulting joint distribution prob(µx, µy) is normalized.   

Given the joint distribution of µx and µy, we would like the distribution of  (µy – µx).   
By changing variables, 

(Another integration!).

The Behrens - Fisher Test

Tests for Means and Variances - 4
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Consider the same example data as before, relaxing the assumption that the variances  
are equal.  (The sample standard deviations are 0.9 and 1.4, not significantly different,  
according to the F-test.)  

We see from the Fig that the distributions of  
µy - µx are  similar to the t-distribution,  
although as we might expect the distribution  
is a little wider if we do not assume that the  
variances are equal.   

Thus although we cannot tell (classically)  
that the variances differ, we will obtain  
somewhat different results by not  
assuming that they are the same. 
                                                                                             Distribution of the difference of means assuming equal 
                                                                                             variances (dashed) and without this assumption (solid). 

This general sort of Bayesian test can be followed for any distribution –  
as long as we know what it is, and can do the integrations.

Tests for Means and Variances - Example 2



14

-  Often we have little information about the distributions from which our data are  
     drawn, yet we need to test whether they are the same or not.   
-  There is only one way in which two unknown distributions can be the same,  
     but a multitude in which they may differ. 
=> classical hypothesis tests, which assume the distributions are the same. 

-  Some information about distributions => Bayesian methods.   
- The trick is to use a multi-parameter generalization of a familiar distribution, with 
    extra parameters to allow distortions in the shape.   
- Eventually can marginalize out these  ‘nuisance parameters’, integrating over our  
    prior assumptions about their magnitude. 

- Most common example: the Gram-Charlier series 
   in which the H's are the Hermite polynomials.   
   The coefficients ai are the free parameters we need.  (Because of properties of  
   Hermite polynomials, these coefficients are also related to the moments of the  
   distribution we are trying to create.) 
   
-The effect of these extra terms is to broaden and skew a Gaussian, and so for some  
    data a few-term Gram-Charlier series may give a useful basis for a   
    parametric analysis. Priors on the coefficients are set by judgment.

Non-Gaussian Parametric Testing - 1
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Example – various Gram-Charlier  
distributions resulting from using just  
two terms. The solid curve is a pure  
Gaussian. 

There are two variants on the Gram-Charlier series.   

1. For a distribution allied to the exponential exp(-x/a), a Laguerre series will  
function in the same way, the distorting functions being the Laguerre polynomials.   

2. The Gamma series is based on the  distribution xα (1-x)β, defined on the interval  
from 0 to 1; the distorting functions are the Jacobi polynomials.   

See computer algebra packages (e.g. MATHEMATICA) for support of such special  
functions.

Non-Gaussian Parametric Testing - 2
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This approach clarifies the workings of non-parametric tests.   

Suppose we fix on a two-term Gram-Charlier  
expansion as a realistic representation of our  
data; the versatility is demonstrated in the Fig.   

For data set 1, we then get the posterior  
prob(µ1,σ1,a1

1,a2
1), and similarly for data set 2.   

If we ask the apparently innocuous question 
“are these data drawn from different  
distributions?'' we see that there are many possibilities (in fact, 24) of the form, for 
instance, µ1 > µ2 and σ1 < σ2 and a1

1 > a1
2 and a2

1 < a2
2.   

Working through these possibilities could be ‘quite tedious’.   

A different question might be “are these distributions at different locations,  
regardless of their widths?'', in which case we could marginalize out the σ’s and a2’s; 
the location, in a Gram-Charlier expansion, is a simple combination of µ and a1.

Non-Gaussian Parametric Testing - 3
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Suggests the simple question: “are these data drawn from the same distribution?'' 

Here comes the ‘Bayes Factor’ or ‘Weight of Evidence’. 

Suppose we try to describe all of the data  Xi, Yi with just one distribution G.  This  
distribution may have parameters so call this hypothesis by (G, θ).  

Alternatively (and by hypothesis exhaustively) we may use (Gx, θx) for the data Xi and  
(Gy, θy) for the data Yi. This hypothesis is (Gx,θx,Gy,θy).  Note we need prior  
probabilities for our two options, G or GxGy.  Bayes' theorem then tells us 

in which the second term of the denominator arises because our alternative to (G, θ) is  
that the data are described as the product of two distinct distributions. The odds on the  
distinct distributions are 

and this ratio is closely related to the Bayes Factor.  To work out these odds we 
integrate the likelihood functions, weighted by the priors, over the  
range of parameters of the distributions.

Which Model is Better?
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We have the following two data sets: 
Xi = -0.16, 0.12, 0.44, 0.60, 0.70, 0.87, 0.88, 1.44, 1.74, 2.79 
Yi =  0.89, 0.99, 1.29, 1.73, 1.96, 2.35, 2.51, 2.79, 3.17, 3.76.   

The means differ by about one std dev.  We consider two a priori equally likely  
hypotheses.  One is that all 20 data are drawn from the same Gaussian.  The other  
is  that they are drawn from different Gaussians.   

In the first case, the likelihood function is 

and we take the prior on σ to be 1/σ.  We also assume a uniform prior for  
the µ’s.   

In the second case, the likelihood function is 

and the prior is 1/σxσy. Integrating over the range of the µ's and σ's, the odds on the  
data being drawn from different Gaussians are about 40 to 1 -   
a good bet.

Which Model is Better? - Example
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PCA


