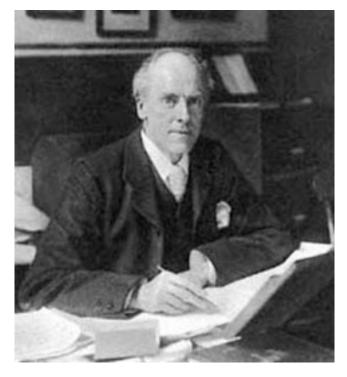
ASTR509 - 9

Hypothesis testing: the non-parametric way

Karl Pearson 1857 – 1936



From around 1906 Pearson put a large effort into setting up a postgraduate centre. He did this

"... to convert statistics in this country from being the playing field of dilettanti and controversialists into a serious branch of science, which no man could attempt to use effectively without adequate training, and more than he could attempt to use the differential calculus, being ignorant of mathematics. "

ASTR509

© Jasper Wall

Fall term 2013

Last time

We got serious about the methodology of hypothesis-testing.

- We clarified concepts by looking at classical vs Bayesian vs parametric vs non-parametric.
- We concluded that we have to understand the classical testing process, even though it is a process of 'rejection'; and it does not prove our "research hypothesis".
- We ground through the 4-step methodology of classical hypothesis-testing:

1. set up H_0 , H_1 ; 2. specify a priori significance-level **a** we can accept, and choose the test, set up the sampling distribution with its rejection area(s) totalling **a**; 3. compute the sampling statistic from our data, rejecting H_0 if it is a value in the rejection region; 4. carry out the terminal action. We looked at the errors, type I and type II.

- We looked at the classical tests for means and variances, t-test and F-test.
- We spent the rest of the lecture trying to do better with Bayesian methods in the classical context. We looked at

computing Bayesian posterior probabilities (more powerful), Behrens-Fisher (Bayesian) test, Gram-Charlier modelling of non-Gaussian data, the Bayes Factor or Weight of Evidence to decide which model is better.

2

Bayes/frequentist/parametric/non-parametric?

Reminder - The essential divide:

	Parametric	Non-Parametric
Bayesian testing	Model known. Data gathering and uncertainty understood.	Such tests do not exist.
Classical testing	Model known. Underlying distribution of data known. Large enough numbers. Data on ordinal or interval scales.	Small numbers. Unknown model. Unknown underlying distributions or errors. Data on nominal or categorical scales.

- non-parametric Bayesian tests do not exist (more or less).

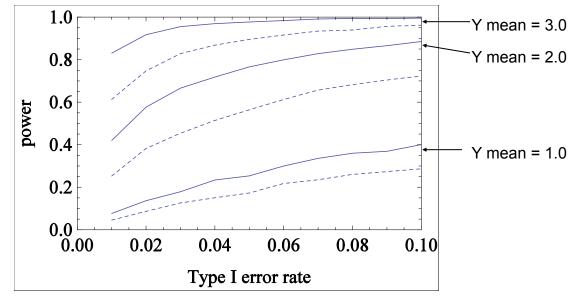
- If we understand the data so that we can model its collection process, then

GO BAYES.

Power vs Type I Error Rate

Recall: Type I error is that H_0 is true, but we have rejected it: prob = α

Type II error is that H_0 is false (H_1 true) but we have failed to reject it: prob = β Power of a test is prob of rejecting a false H_0 (accepting H_1): power = 1- β



Example showing this interplay: generate two sets of 10 random data X_i and Y_i from Gaussians with std dev = 1.0 and means 0.0 (X_i) and 1.0, 2.0, 3.0 (Y_i) – lower to upper curves. Carry out the *t*-test for difference of means. (Dashed lines: std dev = 1.25 instead of 1.0.)

Note the general increase in power as the Type I error rate increases.

Where's the best compromise?

Non-Parametric Tests (Classical territory!)

Why do we need these?

(1) fewer assumptions about the data - if the underlying distribution is unknown, there is no alternative, not parametric testing, not Bayesian testing.

(2) they work for very small sample sizes, like 3.

- (3) they cope with non-numerical data.
- (4) they can treat samples from several populations.

'No distribution is assumed'? Don't be silly. What is assumed?

Counting probabilities!

Example: the **chi-square test**. The number of items in bin **i** is N_i , and we expect E_i . For smallish numbers, **Poisson statistics** tells us that the variance is also E_i . So $(N_i - E_i)^2/E_i$ should be roughly a **squared Gaussian variable**, of unit variance.

Example: the **runs test -** is just using the assumption that each successive observation is equally likely to be 'up' or 'down', so a **binomial distribution** applies.

The assumptions underlying non-parametric tests are **weaker**, and so more general, than the for parametric tests.

The main argument against these tests concerns binning - **binning is bad**; it loses information and therefore **loses efficiency**.

The **power** of non-parametric tests may be somewhat less than their parametric equivalents, but typically no more than 10% less.

Chi-square Test (Pearson 1900)

If we have observational data which can be binned, and a model/hypothesis which predicts the population of each bin,

Then the chi-square statistic describes the goodness-of-fit of the data to the model.

With the **observed** numbers in each of **k** bins as O_i , and the **expected** values from the model as E_i , then this statistic is

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}.$$

The null hypothesis H_0 is that the number of objects falling in each category is E_i ; the **chi-square procedure tests** whether the O_i are sufficiently close to E_i to be likely to have occurred under H_0 .

Chi-square Test 2

The sampling distribution under H_0 of the statistic χ^2 follows the $chi\mbox{-square distribution}$

$$f(x) = rac{2^{-
u/2}}{\Gamma[
u/2]} x^{
u/2-1} e^{-x/2}$$

(for x > 0) with v = (k-1) degrees of freedom. (One degree of freedom is lost because of the constraint that $\Sigma_i O_i = \Sigma_i E_i$.)

This is the distribution function of the random variable

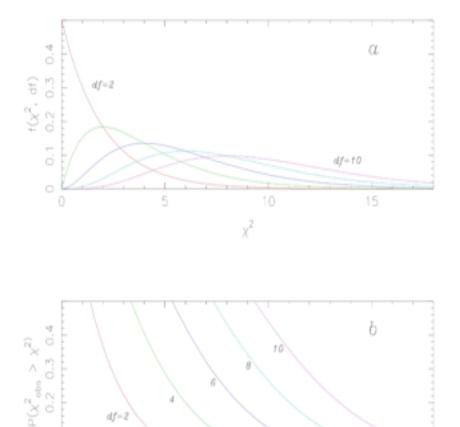
 $Y^2 = Z_1^2 + Z_2^2 + \ldots + Z_{\nu}^2$

where the Z_i are independent random variables of standard Normal distribution.

A chi-square table presents critical values; if χ^2 exceeds these values, H_0 is **rejected** at that level of significance.

Chi-square Test - 3: The Good News

- 1. Common known, accepted.
- 2. Additive pull in different data sets, bin sizes, etc
- 3. The contribution to χ^2 from each bin can be examined to look for regions of good/bad fit.
- 4. Easily computed.
- 5. **Mean** = no. of deg of freedom; **variance** = 2 x no. of deg of freedom
- => Rule of thumb: if χ² ~ no. of bins, accept H₀; if > 2 x (no. of bins), reject.
- 7. Free model-fitting! Later.....



15

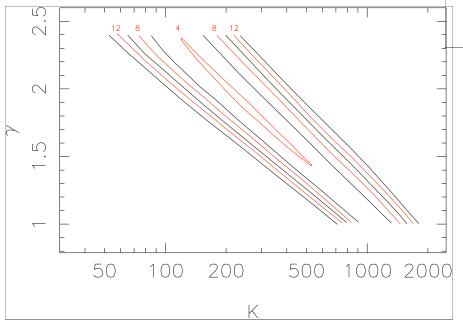
Chi-square Test - 4: The Bad News

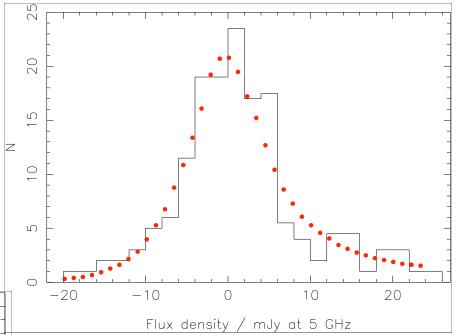
- 1. The **data must be binned** to apply the test, and the bin populations must reach a certain size because it is obvious that instability results as $E_i \rightarrow 0$.
- => Another rule-of-thumb : > 80% of the bins must have E_i > 5. Bins may have to be combined.
- 2. However, the **binning of data** in general, and certainly the binning of bins, results in **loss of efficiency and information**, resolution in particular.
- 3. Small samples **cannot** be treated.
- 4. The **chi-square test** cannot tell **direction**; it is a **'two-tailed'** test; it can only tell whether the differences between sample and prediction exceed those reasonably expected on the basis of statistical fluctuations due to the finite sample size.

There must be something better....

Chi-square Test - 5: Example

Chi-square testing/modelling: the object of the experiment was to estimate the surface-density count (the **N(S)** relation) of faint radio sources at 5 GHz, assuming a power-law **N(>S) = KS**-(γ -1), γ and **K** to be determined from the distribution of background deflections, the **P(D) method**. The histogram of measured deflections is shown right.





The dotted red curve above represents the optimum model from minimizing χ^2 . Contours of χ^2 in the γ - K plane are shown left.

With the best-fit model, $\chi^2 = 4$ for 7 bins, 2 parameters; thus dof = 4. **Right on.**

Chi-square Test - 6: Two or more samples

 H_0 is that the **k** samples are from the same population.

- 1. Each sample is binned in the same r bins (a k x r contingency table).
- 2. Compute

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}, \text{ with } E_{ij} \text{ the expectation values, from } E_{ij} = \frac{\sum_{i=1}^k O_{ij}}{\sum_{i=1}^r \sum_{j=1}^k O_{ij}}$$

Under H_0 this is distributed as χ^2 , with (r-1)(k-1) degrees of freedom.

There is a modification of this test for the case of the N-object 2 x 2 contingency table:

$$\begin{array}{|c|c|c|} Sample = & 1 & 2 \\ Category = 1 & A & C \\ & = 2 & B & D \end{array}$$

$$\chi^{2} = \frac{N(|AD - BC| - N/2)^{2}}{(A + B)(C + D)(A + C)(B + D)}$$

which has **dof = 1**.

The usual chi-square caveat applies – cell numbers should stay above 5.

If they don't, combine adjacent cells, or abandon ship.

And if there are only **2 x 2** cells, the total **N** must exceed 30; if not, use the **Fisher Exact Probability test**. For data not on a numerical scale, this test is probably it.

A positive: The **k-sample chi-square test** may be used to test a directional alternative to H0; H1 can be that the two groups differ in some predicted sense.

Reduced Chi-square

- 'reduced chi-square' =
 (chi square)/(degrees of freedom)
 ≈ 1 if the fit is reasonable.
- Frequently it is not clear which is in use.
- You have been warned.

OK, so what's the Fisher Exact Probability Test?

For two independent small samples with discrete binary data, i.e. mutually exclusive bins:

 $\begin{array}{rll} \text{Sample} = & 1 & 2 \\ \text{Category} = 1 & \text{A} & \text{C} \\ & = 2 & \text{B} & \text{D} \end{array}$

 H_0 : the assignment of 'scores' is random

15

Compute

$$p = \frac{(A+B)!(C+D)!(A+C)!(B+D)!}{N!A!B!C!D!}$$

This is the probability that the total of N scores could be as they are when the two samples are in fact identical. But the test asks : what is the probability of occurrence of the observed outcome or one more extreme under H_0 ?

Thus we must compute and add the probabilities of the more extreme cases until **both** samples have a zero in one of their boxes. Then

 $p_{tot} = p_1 + p_2 + p_3 + \dots$

Computation can be 'tedious'; but it's the best test to use for small samples, and if N < 20 it is on its own.

Kolmogorov-Smirnov (K-S) Testing

Available in one-sample (**sample against model**) and two-sample (**sample comparison**) versions.

For one sample:

- **1.** Calculate $S_e(x)$, the **predicted** cumulative (integral) frequency distribution under H_0
- Compute S_o(x), the observed cumulative distribution, the sum of all observations to each x divided by the sum of all N observations.
- **3.** Find $D = \max |S_e(x) S_o(x)|$
- 4. Consult the known sampling distribution for D under H₀, as given in a K-S table, to determine the fate of H₀. If D exceeds a critical value at the appropriate N, then H₀ is rejected at that level of significance.

Thus as for the chi-square test, the sampling distribution indicates whether a divergence of the observed magnitude is 'reasonable' if the difference between observations and prediction is due solely to statistical fluctuations.

K-S Testing, two samples

- Calculate S_m(x), the cumulative (integral) frequency for sample 1 (m members) and S_n(y), the cumulative distribution for sample 2 (n members).
- **2.** Find $D = \max |S_m(x) S_n(y)|$
- Consult the known sampling distribution for D under H₀, as given in a K-S two-sample table, to determine the fate of H₀. Now there are tables for both one- and two-tailed tests. If D exceeds a critical value at the appropriate N, then H₀ is rejected at that level of significance.

If you run off the end of the tables with big samples, **approximations** work:

(1) For the **two-tailed test**, a simple table for the usual levels of significance is given.

(2) For large samples, **one-tailed test**, compute $\chi^2 = 4D^2 \frac{mn}{m+n}$,

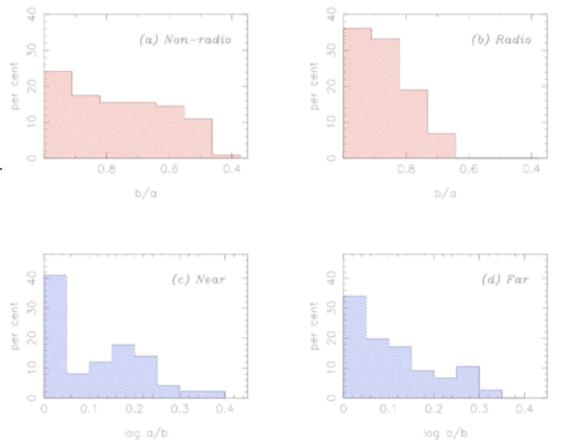
which has a ~ chi-square sampling distribution with 2 dof. Then use a chi-square table to determine the fate of H_0 .

K-S Testing, two samples - Example

Kolmogorov-Smirnov tests on subsamples of ellipticals from the Disney-Wall (1977) sample of bright ellipticals.

Upper panels -

distribution functions in **b**/**a**, minor to major axis, for (a) the 102 undetected and (b) the 30 radiodetected ellipticals in the sample. The K-S two-sample test rejects H_0 , that the subsamples are drawn from the same population, at a significance level of < 1%.



Lower panels –

distribution functions in **log a/b** for (c) the 51 ellipticals closer than 30 Mpc, (d) 76 bright ellipticals in the sample more distant than this. The K-S test indicates no significant difference between these two subsamples.

Kolmogorov-Smirnov (K-S) Testing - Comments

Advantages: (1) no binning

- (2) small samples
- (3) greater power for intermediate samples
- (4) with modification, can be directional

Disadvantages: (1) continuous functions needed, numerical scale

(2) no model fitting side benefit, no minimization of K-S possible.

A very powerful test:

Efficiency always exceeds chi-square,.

Efficiency just exceeds that of the **Mann-Whitney U test** (coming) for very small samples. For larger samples, the U-test is preferred.

Also note the Anderson-Darling Test, now generally believed to be better than K-S, but a little more complicated to apply.

Runs Test of Randomness

So simple - **form a binary (1 - 0) statistic from each sample datum**, e.g.the sign of the residuals about a best-fit line.

It is to test H_0 that this new statistic is random; successive observations are independent. We are asking a**re there too few runs?**

Example: for a polynomial fit to a set of (X_i, Y_i) are there long patches with the data above the line? below the line? These would suggest our poly is a poor description of the data.

Determine **m**, the number of heads or 1's; **n**, the number of tails or 0's, **N=n+m**; and find **r**, the number of runs.

Look up the level of significance from the tabled probabilities for one or two-tailed test – depending on H_1 , which can specify (as the **research hypothesis**) how the non-randomness might occur.

(In general we are concerned simply with the **one-tail test**, asking whether or not the number of runs is **too few**, the issue being independence of data in a sequence.)

The procedure when the numbers exceed 20 and toddle off the end of the table is equally simple:

For **m** 'heads' and **n** 'tails' with **N** data, the expectation value of number of runs is

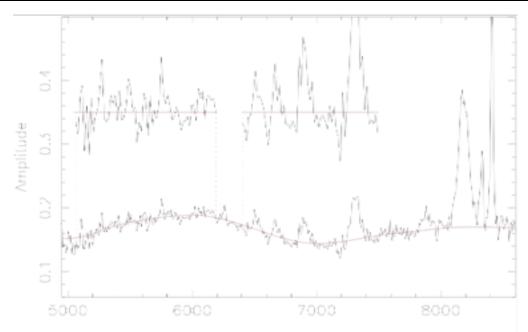
$$\mu_r = \frac{2mn}{m+n} + 1$$
, with $\sigma_r = \sqrt{\frac{2mn(2mn-N)}{N^2(N-1)}}$.

...becoming **asymptotically Gaussian for large N**, so that the Gaussian distribution or its integral erf can be used by forming

$$z = \frac{r - \mu_r}{\sigma_r}$$

and consulting tables for the Normal distribution.

Runs Test of Randomness - Example



Wovelength (Angstroms)

A spectrum of the quasar 3C207, taken with the 4.2-m William Herschel Telescope. Red curve: baseline fitted by Fourier minimum-component technique.

Two regions considered for runs test are shown, baseline-subtracted and magnified by 3.

Left region - concordance, 36 above baseline, 29 below, 31 runs vs expectation of 32.1, z = -0.28.

Right region - in the Hydrogen Balmer-line series, with several members present in emission; **rejection of randomness** at 4σ : 31 positives, 32 negatives, 16 runs against an expectation of 31.5, z = -3.94. Broad emission lines yield contiguous regions decreasing the number of runs.

Wilcoxon-Mann-Whitney U Test for two samples

There are two samples, **A** (**m** members) and **B** (**n** members).

 H_0 is that A and B are from the same distribution or have the same parent population.

H₁ may be one of three possibilities: A stochastically larger than B; B stochastically larger than A; or A and B differ in some other way, perhaps in scatter or skewness. The first two hypotheses are directional, resulting in one-tailed tests; the third is not, resulting in a two-tailed test.

- 1. Decide on H_1 and the significance level α ,
- 2. Rank in ascending order the combined sample **A+B**, preserving the **A** or **B** identity of each member.
- 3. (Depending on choice of H_1) Sum the number of A-rankings to get U_A , or vv, the B-rankings to get U_B . Tied observations are assigned the average of the tied ranks. Note that if N=m+n, $U_A + U_B = \frac{N(N+1)}{2}$

so that only one summation is necessary to determine both.

Wilcoxon-Mann-Whitney UTest concluded

And finally:

4. Look up the result in the table calculated from the sampling distribution (pdf of U).

The table presents probabilities for **U** > **observed**, and for **U** < **observed**.

For samples >10, the sampling distribution for **U tends to Normal** with mean $\mu_A = m(N+1)/2$ and variance $\sigma_A^2 = mn(N+1)/12$. Significance can be assessed from the Normal distribution, by calculating

$$z = \frac{U_A \pm 0.5 - \mu_A}{\sigma_A}$$

where +0.5 corresponds to considering probabilities of $U \leq$ that observed (lower-tail), and -0.5 for $U \geq$ that observed (upper-tail).

If the two-tailed test is required, simply double the probabilities.

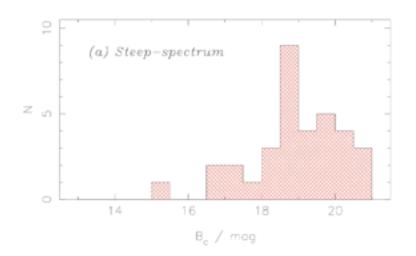
U Test - Example

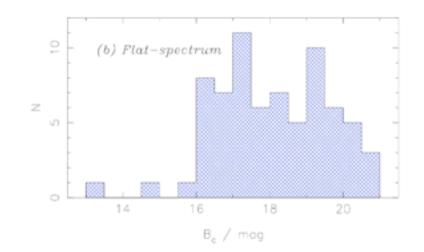
Magnitude distributions for flat and steep (radio) spectrum quasars from a complete sample of quasars in the Parkes 2.7-GHz Survey.

 H_1 is that the flat-spectrum quasars extend to significantly lower (brighter) magnitudes than do the steep-spectrum quasars, a claim made earlier by several observers.

The eye agrees with H_1 , and so does the result from the **U test**, in which we found **U = 719**, **z = 2.69**, rejecting H_0 in favour of H_1 at the

0.004 level of significance.





Non-Parametric Tests for Comparison of Samples

Level of	One-sample	Two-sample case		k-sample case	
measurement	case	Related	Independent	Related	Independent
Nominal or categorical	Binomial test chi-square test	McNemar change test	Fisher exact test for 2 × 2 tables chi-square test for	Cochran Q test	chi-square test for $r \times k$ tables
Ordinal or ordered	Kolmogorov- Smirnov one- sample test One-sample runs test Change-point test	Sign test Wilcoxon signed-ranks test	$r \times 2$ tables Median test U (Wilcoxon- Mann-Whitney) test Robust rank- order test Kolmogorov- Smirnov two- sample test	Friedman two- way analysis of variance by ranks Page test for ordered alternatives	Extension of Median test Kruskal- Wallis one- way analysis of variance Jonckheere test for ordered alternatives
Interval		Permutation test for paired replicates	Siegel-Tukey test for scale- differences Permutation test for two independent samples Moses rank- like test for scale differences		

26

Single-Sample Non-Parametric Tests

Test	Applicability [†]	N < 10?	Comment
Binomial test	$\begin{array}{c} \text{Goodness-of-fit} \\ (N) \end{array}$	Yes	Appropriate for two-category (dichotomous) data; do <i>not</i> dichotomize continuous data.
Chi-square test	$\begin{array}{c} \text{Goodness-of-fit} \\ (N) \end{array}$	No	For testing categorized, pre-binned, or classified data; choose categories with expected frequencies $6 - 10$.
Kolmogorov- Smirnov one- sample test	Goodness-of-fit (O)	Yes	The most powerful test for data from a continuous distribution; may always be more efficient than chi-square test.
One-sample runs test	Randomness of event sequences (O)	Yes	Does not estimate differences between groups.
Change-point test	Change in the distribution of an event sequence (O)	Yes	Robust with regard to changes in distributional form; efficient.

[†]Goodness-of-fit indicates general testing for any type of difference, *i.e.* H_o is that the distribution is drawn from the specified population. The level of measurement required is indicated by N – Nominal, O – Ordinal, or I – Interval.

Two-Sample Non-Parametric Tests

Test	$Applicability^{\dagger}$	N < 10?	Comment
Fisher exact test for 2×2 tables	Difference (N)	Yes	The most powerful test for dichotomous data.
$\begin{array}{c} \text{Chi-square} \\ \text{test for} \\ r \times 2 \text{ tables} \end{array}$	Difference (N)	No	Best for pre-binned, classified, or categorized data.
Median test	Location (O)	Yes	Best for small numbers; efficiency decreases with N.
U (Wilcoxon- Mann-Whitney) test	Location (O)	Yes	One of the most efficient non- parametric tests.
Robust rank- order test	Location (O)	Yes	Efficiency similar to U test.
Kolmogorov- Smirnov two- sample test	Two-tailed: Difference One-tailed: Location (O)	Yes	The most powerful test for data from a continuous distribution.
Siegel-Tukey test for scale- differences	Dispersion (O)	Yes	The medians must be the same (or known) for both distributions. Low efficiency.
Permutation test	Location (I)	Yes	Very high efficiency.
Moses rank-like test for scale- differences	Dispersion (I)	(No)	Does not requires identical medians; valid for small samples, but efficiency increases with sample size.

[†]Difference signifies sensitivity to any form of difference between the two distributions, *i.e.* H_o is that the two distributions are drawn from the same population; *Location* indicates sensitivity to the position of the distributions, *e.g.* means or medians; and *Dispersion* indicates sensitivity to the spread of the distributions, *i.e.* variance, rms, extremes. The level of measurement required is indicated by N – Nominal, O – Ordinal, or I – Interval.