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Hypothesis testing: 
 the non-parametric way

From around 1906 Pearson put a large effort into 
setting up a postgraduate centre. He did this 
!
   
“...    to convert statistics in this country from 
being the playing field of dilettanti and 
controversialists into a serious branch of science,  
which no man could attempt to use effectively  
without adequate training, and more than he 
could attempt to use the differential calculus, 
being ignorant of mathematics. “

Karl Pearson 1857 – 1936
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!
We got serious about the methodology of hypothesis-testing. 
!
- We clarified concepts by looking at  classical vs Bayesian vs parametric vs non-parametric. 
!
- We concluded that we have to understand the classical testing process, even though it is a  
      process of ‘rejection’; and it does not prove our “research hypothesis”. 
!
- We ground through the 4-step methodology of classical hypothesis-testing: 
      1. set up H0, H1; 2. specify a priori significance-level α we can accept, and choose   

the test, set up the sampling distribution with its rejection area(s) totalling α;   
3. compute the sampling statistic from our data, rejecting H0 if it is a value in the  
rejection region; 4. carry out the terminal action.  
We looked at the errors, type I and type II. 

!
- We looked at the classical tests for means and variances, t-test and F-test. 
!
-  We spent the rest of the lecture trying to do better – with Bayesian methods 
   in the classical context. We looked at  
!
           computing Bayesian posterior probabilities (more  powerful),  
           Behrens-Fisher (Bayesian) test,   
           Gram-Charlier modelling of non-Gaussian data, 
           the Bayes Factor or Weight of Evidence to decide which model  
                 is better. 
!

Last time ....
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Reminder - The essential divide:

 - non-parametric Bayesian tests do not exist (more or less). 
!
 - If we understand the data so that we can model its collection process, then  
!
                                                     GO BAYES.

Bayes/frequentist/parametric/non-parametric?
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Recall: Type I error is that H0 is true, but we have rejected it: prob = α 

            Type II error is that  H0 is false (H1 true) but we have failed to reject it: prob = β  

             Power of a test is prob of rejecting a false H0 (accepting H1): power = 1-β

Example showing this interplay: generate two sets of 10 random data Xi and Yi from Gaussians 
with std dev = 1.0 and means 0.0 (Xi) and 1.0, 2.0, 3.0 (Yi) – lower to upper curves. Carry out 
the t-test for difference of means. (Dashed lines: std dev = 1.25 instead of 1.0.)  

Note the general increase in power as the Type I error rate increases.  

Where’s the best compromise?

Y mean = 3.0

Y mean = 2.0

Y mean = 1.0

Power vs Type I Error Rate
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!
!
Why do we need these? 
!
(1) fewer assumptions about the data - if the underlying distribution is unknown,  
            there is no alternative, not parametric testing, not Bayesian testing.  
!
(2) they work for very small sample sizes, like 3.  
!
(3) they cope with non-numerical data. 
!
(4) they can treat samples from several populations. 
!
!
‘No distribution is assumed’? Don’t be silly. What is assumed?  
!
!
                                      Counting probabilities! 
!

Non-Parametric Tests (Classical territory!)
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!
!
Example:  the chi-square test.  The number of items in bin i is Ni, and we expect Ei.   
For smallish numbers, Poisson statistics tells us that the variance is also Ei.  So 
(Ni - Ei)2/Ei should be roughly a squared Gaussian variable, of unit variance.   
!
!
Example: the runs test - is just using the assumption that each successive  
observation is equally likely to be ‘up' or ‘down’, so a binomial distribution applies.   
!
!
The assumptions underlying non-parametric tests are weaker, and so more general,  
than the for parametric tests. 
!
The main argument against these tests concerns binning -  binning is bad; it loses 
information and therefore loses efficiency.  
!
The power of non-parametric tests may be somewhat less than their parametric 
equivalents, but typically no more than 10% less.

Non-Parametric Tests 2
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If we have observational data which can be binned, and a model/hypothesis which  
         predicts the population of each bin,  
!
!
Then the chi-square statistic describes the  goodness-of-fit of the data to the model.   
!
!
With the observed numbers in each of k bins as Oi, and the expected values from  
the model as Ei, then this statistic is 
!
!
!
!
!
!
The null hypothesis H0  is that the number of objects falling in each category is Ei;  
the chi-square procedure tests whether the Oi are sufficiently close to Ei to be 
likely to have occurred under H0.

Chi-square Test (Pearson 1900)
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The sampling distribution under H0 of the statistic χ2  
follows the chi-square distribution 
!
!
!
!
(for x > 0) with ν = (k-1) degrees of freedom. (One degree of freedom is lost because of   
the  constraint that Σi Oi = Σi Ei.)  
!
This is the distribution function of the random variable 
                                      
!
!
where the Zi are independent random variables of standard Normal distribution.   
!
A chi-square table presents critical values; if χ2 exceeds these values, H0 is 
rejected at that level of significance.

Chi-square Test 2
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1. Common – known, accepted. 
!

2. Additive – pull in different data sets, 
      bin sizes, etc 
!
3. The contribution to χ2  from each bin 
      can be examined to look for regions 
      of good/bad fit. 
!
4. Easily computed.  
!

5. Mean =  no. of deg of freedom;  
      variance = 2 x no. of deg of freedom 
!
6. => Rule of thumb: if χ2  ~ no. of bins, 
      accept H0; if > 2 x (no. of  bins), 
      reject. 
!
7.  Free model-fitting! Later….. 

Chi-square Test - 3:  The Good News
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1. The data must be binned to apply the test, and the bin populations must  
      reach a certain size because it is obvious that instability results as  
      Ei → 0.   
!
 => Another rule-of-thumb : > 80% of the bins must have Ei > 5.   
       Bins may have to be combined. 
!
2. However, the binning of data in general, and certainly the binning of bins,  
      results in loss of efficiency and information, resolution in particular. 
!
3.  Small samples cannot be treated. 
!
4. The chi-square test cannot tell direction; it is a ‘two-tailed' test; it can only  
      tell whether the differences between sample and prediction exceed those 
      reasonably expected on the basis of statistical fluctuations due to the finite  
      sample size.   
!
There must be something better…..

Chi-square Test - 4:  The Bad News
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Chi-square testing/modelling: the  
object of the experiment was to  
estimate the surface-density count  
(the N(S) relation) of faint radio  
sources at 5 GHz, assuming a  
power-law N(>S) = KS-(γ-1),  γ and K  
to be determined from the distribution  
of background deflections, the  
P(D) method. The histogram of  
measured deflections is shown right.

The dotted red curve above represents  
the optimum model from minimizing  
χ2. Contours of χ2 in the  γ - K plane are  
shown left. 
!
With the best-fit model, χ2 = 4 for 7 bins, 
2 parameters; thus dof = 4. Right on.

Chi-square Test - 5:  Example
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H0 is that the k samples are from the same population.  
!
1. Each sample is binned in the same r bins (a k x r contingency table).  
!
2. Compute 
!
!
!
!
!
Under H0  this is distributed as χ2, with (r-1)(k-1) degrees of freedom. 
!
!
There is a modification of this test for the case of the N-object 2 x 2 contingency table:  
!
!
!
!
which has dof = 1. 
!

Chi-square Test - 6:  Two or more samples
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!
!
!
!
The usual chi-square caveat applies – cell numbers should stay above 5.  
!
If they don’t, combine adjacent cells, or abandon ship.   
!
!
And if there are only 2 x 2 cells, the total N must exceed 30; if not, use the Fisher  
Exact  Probability test. For data not on a numerical scale, this test is probably it.  
!
!
!
A positive: The k-sample chi-square test  may be used to test a directional  
alternative to H0; H1 can be that the two groups differ in some  
predicted sense. 

Chi-square Test - 7:  Two or more samples
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• ‘reduced chi-square’ =  
   (chi square)/(degrees of freedom)  
   ≈ 1 if the fit is reasonable. 
!
• Frequently it is not clear which is in use. 
!
• You have been warned.

Reduced Chi-square
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For two independent small samples with discrete binary data, i.e. mutually exclusive 
bins: 
!
                                                         H0: the assignment of ‘scores’ is random 
!
!
!
Compute  
!
!
!
This is the probability that the total of N scores could be as they are when the two 
samples are in fact identical. But the test asks : what is the probability of occurrence 
of the observed outcome or one more extreme under H0? 
!
Thus we must compute and add the probabilities of the more extreme cases until 
both samples have a zero in one of their boxes. Then 
!
                                  ptot = p1 + p2 + p3 + …. 
!
Computation can be ‘tedious’; but it’s the best test to use for  
small samples, and if N < 20 it is on its own.

OK, so what’s the Fisher Exact Probability Test?
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!
Available in one-sample (sample against model) and two-sample (sample 
comparison) versions. 
!
For one sample: 
!
1. Calculate Se(x), the predicted cumulative (integral) frequency distribution under H0 
!
2. Compute So(x), the observed cumulative distribution, the sum of all observations  
    to each x divided by the sum of all N observations. 
!
3. Find  
!
4. Consult the known sampling distribution for D under H0, as given in a K-S table,  
    to determine the fate of H0. If D exceeds a critical value at the appropriate N,  
    then H0 is rejected at that level of significance. 
!
Thus as for the chi-square test, the sampling distribution indicates whether a  
divergence of the observed magnitude is ‘reasonable' if the difference between  
observations and prediction is due solely to statistical fluctuations. 
!

Kolmogorov-Smirnov (K-S) Testing
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1. Calculate Sm(x), the cumulative (integral) frequency for sample 1 (m members)  
      and Sn(y), the cumulative distribution for sample 2 (n members). 
!
2.  Find  
!
3.  Consult the known sampling distribution for D under H0, as given in a K-S  
       two-sample table, to determine the fate of H0. Now there are tables for both  
       one- and two-tailed tests. If D exceeds a critical value at the appropriate N,  
       then H0 is rejected at that level of significance. 
!
If you run off the end of the tables with big samples, approximations work: 
!
(1) For the two-tailed test, a simple table for the usual levels of significance is given. 
!

(2) For large samples, one-tailed test, compute  
!

which has a ~ chi-square sampling distribution with 2 dof. Then use a chi-square  
table to determine the fate of H0.  
!

K-S Testing, two samples
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Kolmogorov-Smirnov tests on  
subsamples of ellipticals from the  
Disney-Wall (1977) sample of  
bright  ellipticals.  
!
Upper panels - 
distribution functions in b/a, minor  
to major axis, for (a) the 102  
undetected and (b) the 30 radio- 
detected ellipticals in the 
sample. The K-S two-sample  
test rejects H0, that the  
subsamples are drawn from  
the same population, at a  
significance level of < 1%. 
  
Lower panels –  
distribution functions in log a/b for (c) the 51 ellipticals closer than 30 Mpc,  
(d) 76 bright ellipticals in the sample more distant than this. The K-S test indicates  
no significant difference between these two subsamples.

K-S Testing, two samples - Example
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!
Advantages:      (1) no binning 
                            (2) small samples 
                            (3) greater power for intermediate samples 
                            (4) with modification, can be directional 
!
Disadvantages: (1) continuous functions needed, numerical scale 
                            (2) no model fitting side benefit, no minimization of K-S possible.

Kolmogorov-Smirnov (K-S) Testing - Comments

A very powerful test:  
!
Efficiency always exceeds chi-square,. 
!
Efficiency just exceeds that of the Mann-Whitney U test (coming) for very small 

samples. For larger samples, the U-test is preferred.  
!
Also note the Anderson-Darling Test, now generally believed to be better 

than K-S, but a little more complicated to apply.
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!
So simple - form a binary (1 - 0) statistic from each sample datum, e.g.the sign of the 
residuals about a best-fit line.  
!
It is to test H0 that this new  statistic is random; successive observations are 
independent.  We are asking are there too few runs?  
!
Example: for a polynomial fit to a set of (Xi,Yi) are there long patches with the data 
above the line? below the line? These would suggest our poly is a poor 
description of the data.  
  
Determine m, the number of heads or 1's; n, the number of tails or 0's, N=n+m; and  
find r, the number of runs. 
!
Look up the level of significance from the tabled probabilities for one or two-tailed  
test – depending on H1, which can specify (as the research hypothesis) how the non- 
randomness might occur.  
!
(In general we are concerned simply with the one-tail test, asking whether or not the 
number of runs is too few, the issue being independence of  
data in a sequence.)  
!

Runs Test of Randomness
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!
The procedure when the numbers exceed 20 and toddle off the end of the table is 
equally simple: 
!
For m ‘heads' and n ‘tails' with N data, the expectation value of number of runs is 
!
!
!
!
…becoming asymptotically Gaussian for large N, so that the Gaussian  
distribution or its integral erf can be used by forming 
!
!
!
!
and consulting tables for the Normal distribution.

Runs Test of Randomness 2

µr =
2mn
m+n + 1, with �r =

r
2mn(2mn�N)

N2(N�1) .
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A spectrum of the quasar 3C207, taken with the 4.2-m William Herschel Telescope. Red curve: 
baseline fitted by Fourier minimum-component technique.  
!
Two regions considered for runs test are shown, baseline-subtracted and magnified by 3.  
!
Left region - concordance, 36 above baseline, 29 below, 31 runs vs expectation of 32.1, z = -0.28.  
!
Right region – in the Hydrogen Balmer-line series, with several members present in emission; 
rejection of randomness at 4σ: 31 positives, 32 negatives, 16 runs against an expectation of  
31.5, z = -3.94. Broad emission lines yield contiguous regions decreasing the number of runs.

Runs Test of Randomness - Example
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!
There are two samples, A (m members) and B (n members). 
!
H0 is that A and B are from the same distribution or have the same parent population. 
!
H1 may be one of three possibilities: A stochastically larger than B;  B stochastically 
larger than A; or A and B differ in some other way, perhaps in scatter or skewness. 
The first two hypotheses are directional, resulting in one-tailed tests; the third is not, 
resulting in a two-tailed test.  
!
1.  Decide on H1 and the significance level α, 
!
2. Rank in ascending order the combined sample A+B, preserving the A or B identity  
     of each member. 
!
3. (Depending on choice of H1) Sum the number of A-rankings to get UA, or vv, the  
     B-rankings to get UB. Tied observations are assigned the average of the tied ranks.  
     Note that if N=m+n, 
!
     so that only one summation is necessary to determine both. 
!

Wilcoxon-Mann-Whitney U Test for two samples
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And finally: 
!
4. Look up the result in the table calculated from the sampling distribution (pdf of U). 
!
The table presents probabilities for U > observed, and for U < observed.  
!
For samples >10, the sampling distribution for U tends to Normal with mean  
µA = m(N+1)/2 and variance σA

2 = mn(N+1)/12. Significance can be assessed  
from the Normal distribution, by calculating                                  
                                                          
!
!
!
where +0.5 corresponds to considering probabilities of U ≤ that observed (lower-tail),  
and -0.5 for U ≥ that observed (upper-tail).   
!
If the two-tailed test is required, simply double the probabilities.

Wilcoxon-Mann-Whitney U Test concluded



25

Magnitude distributions for flat and  steep   
(radio) spectrum quasars from a complete  
sample of quasars in the Parkes 2.7-GHz  
Survey.  
!
H1 is that the flat-spectrum quasars  
extend to significantly lower (brighter)  
magnitudes than do the steep-spectrum  
quasars, a claim made earlier by several  
observers.  
!
The eye agrees with H1, and so  
does the result from the U test, in which we  
found U = 719, z = 2.69, rejecting H0 in  
favour of H1 at the  
!
         0.004 level of significance.

U Test - Example
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Non-Parametric Tests for Comparison of Samples
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Single-Sample Non-Parametric Tests
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Two-Sample Non-Parametric Tests


